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Abstract 
 

The aim of this paper is to expand the application of social welfare functions (swfs) like for 
example the simple majority rule μ and the consensus rule κ to the domain of higher-order societies 
(i.e., societies that have other societies as members). It is shown, first, that on this larger domain 
swfs may fail to retain some of their standard properties. For example, μ comes to violate 
anonymity and responsiveness.  But, second, in such cases new properties of the swfs are revealed. 
I focus on the reducibility property of a swf: its capacity to mimic the behavior of other swfs. I 
give a characterization of the classes of swfs reducible to μ and to κ and prove that while κ is not 
reducible to μ, conversely μ can be reduced to κ. Finally, I show that some swfs can be extended, 
in the sense that the application of the swf to a society formed of a large number of members is 
reducible to iterate applications of that swf to a (higher-order) society formed of at most two 
members. Some larger implications of the results are discussed.  
 

 
Keywords: higher-order societies, majority rule, unanimity, consensus, reducibility, binary 
societies  

 
JEL classification: D71 
  



 
 
 
 
 
Social welfare functions (swfs) like the simple majority μ are usually studied on societies 

consisting in an arbitrary number n of members called “individuals”. In this paper I shall depart 
from this assumption by taking into account a larger domain to which a swf applies. It includes 
not only societies formed of a (finite) number of individuals (first-order societies), but also more 
complex societies. These societies are higher-order, which means that their members may be 
individuals, but also other societies. In applying a swf to a profile of such societies, there is no 
guarantee that it retains the same behavior it had on first-order societies. A straightforward 
example is that of μ: although it is anonymous on first-order societies, i.e. it is indifferent to the 
names of individuals in them, it may behave even in a dictatorial way on some societies of 
societies.  

By taking into account such societies we move from direct democracy to the representative 
(or indirect) democracy. As Murakami (1966) argued, its study requires an appeal to a “hierarchy 
of voting procedures, each of which may be called a council. Every individual casts a ballot or 
ballots in one council or councils. A decision in each council is represented in a higher council 
whose decision is, in turn, represented in a still higher council and so on”. A famous example of 
applying majority voting to higher-order societies is the election of consuls, censors and other 
magistrates by the Roman comitia centuriata (Rousseau: 2002, IV4; Mommsen: 1894, XI; Taylor: 
1966; Hall: 1964). The reform of Servius (the sixth Roman king) divided the population of Rome 
into six classes, which together comprised 193 centuriae (centuries). The assembly was extremely 
favorable to the aristocracy: the first class alone (consisting in the richest members of the society) 
had 98 centuries, more than the majority of 97 required for electing a magistrate. The decisions of 
comitia centuriata were not based simply on the votes of the Roman citizens, but also appealed to 
the group vote of the centuries. The vote of a century was determined by the votes of its members, 
by use of the simple majority rule. In a second step the assembly decisions were reached by an 
absolute majority of centuries, each century disposing of one vote in the assembly1.  

 
1 Voting was sequential, starting with the vote of a century (perhaps selected by lot) belonging to the first class, and 
the results were communicated to all the members of the assembly; thus, majorities could be known before the vote 
of the centuries belonging to other classes (therefore, the recording of their vote was not even completed). As Rousseau 
observed, the effect of this voting procedure was that what the minority had decided passed for a decision of the 
multitude. In other words, individual votes were not equal. 



The study of swfs is usually guided by the characterization approach. The idea is to find 
out the class of swfs that satisfy a certain collection of (usually desired or intuitive) properties. A 
swf is characterizing by giving a set of properties it and only it satisfies. May (1952) is the classic. 
It proves that the simple majority rule μ is the only swf which satisfies the three properties 
anonymity, neutrality and responsiveness. Following this approach, a large number of new 
characterizations of μ were provided.  Some of them even appealed to properties involving second-
order societies: weak path independence in Asan and Sanver (2002), reducibility in Quesada 
(2013a), reducibility to subsocieties in Woeginger (2003), which inspired Alcantud (2019). 

Murakami (1966; 1968) attempted to account for a swf in an indirect, comparative way. 
He argued that starting with some swf g, we can produce the collection of swfs that in some sense 
can be reduced to that swf. Since the simple majority rule μ is well-known, if some other swf (the 
weighted majority rule, for example) is reducible to it, then we can better grasp how it works. 
Fishburn (1971) and Fine (1972) succeeded in identifying the class of swfs that can be expressed 
in terms of iterated applications of the simple majority rule μ. Following their account, in this paper 
I define a set of necessary and sufficient conditions for reducing a swf to the consensus rule κ. I 
also show that this set includes μ: the simple majority rule can be reduced to κ. In these proofs the 
appeal to higher-order societies is essential.  

These results are technical, but I believe that they have some more general implications. 
The received view on the relations between unanimity / consensus and simple majority is that they 
are distinct rules and have different contexts of application. While unanimity and consensus are 
properly used in constitutional matters, the majority rule (both simple and absolute) is to be applied 
at the post-constitutional level. Theorem 3 below entails that this distinction is not sharp, because 
majority decision-making can be explained as a sophisticated consensual decision.  

A final point of departure from the standard approach of studying swfs I make in this paper 
is this. Usually, no special interest is given to the number of individuals in the societies swfs apply 
to. One only mentions that these societies consist in an arbitrarily chosen number of individuals. 
However, it is possible to show that reducibility may work when we start with the binary 
component of a swf, i.e. with its applications to societies formed of only two members. I prove 
that many swfs can be extended, in the sense that applying them to a society formed of an 
arbitrarily large number of members can be reduced to iterated applications of their restriction to 
societies formed of at most two members. Swfs like μ can be extended, but other swfs (the 
consensus rule κ and the absolute majority rule α among them) cannot. 

The paper is structured as follows. In section 1 I present the framework. Some examples 
of properties of swfs that involve higher-order societies are discussed in section 2. It also includes 



the main lemma, which is essential in the proofs of theorems. In sections 3 and 4 I present the main 
results of this paper. I show, first, that although the consensus rule κ is irreducible to μ, the converse 
relation holds: μ is definable in terms of iterated applications of κ. Then I prove that the class of 
all κ-reducible swfs is characterized by a set of intuitive properties: neutrality, monotonicity and 
strong Pareto. In section 4 I use the same approach to show that some swfs can be extended. A by-
product of this result is that to characterize a swf we can focus on its binary part. A characterization 
of the binary majority rule μ2 which appeals to extremely weak properties is given. All proofs are 
collected in section 5. Section 6 concludes. 

 
1. The framework 
 
Let G = {v1, v2, … vn …} be an infinite group of individuals. For the purposes of this paper 

the exact nature of these “individuals” is not important. They can be persons, firms or other sorts 
of entities. The class ΩG of societies is given by the following recursive procedure2:  

a) If S ⊆ G and S is finite, then S ∊ ΩG; 
b) if S1 ∊ ΩG and S2 ∊ ΩG, then {S1, S2} ∊ ΩG; 
c) if S1 ∊ ΩG and S2 ∊ ΩG, then S1 ∪ S2 ∊ ΩG; 
d) if S ∊ ΩG, then ∪S ∊ ΩG. 

A first-order society is a (possibly empty) subset of S. The set of first-order societies will 

be denoted by 1
GΩ . Note that by construction all societies are finite. Say that a society S' is nested 

in S if S' ∊ S or there is a finite sequence S1, S2… Sm such that S' ∈ S1 ∈ S2 ∈… ∈ Sm ∈ S. The 
basis B(S) of the society S is the set of all individuals who occur in S or in some society nested in 
it. If S = {v1, ,v2… vn}, I shall denote by S-j the result of removing vj from S (j = 1, 2, … n); with 
some abuse of notation, if S = {S1, S2, … Sn}, I shall also denote by S-j the result of removing Sj 
from S (j = 1, 2, … n). Say that a society S is binary if it has at most two members and all societies 
nested in it have at most two members. 

The set of alternatives is {x, y}, with x ≠ y. A profile for G is a function p: G → {1, 0, -1} 

assigning a preference p(vj) =
jvp  to each individual vj in G. If the number 

jvp is 1, x is preferred 

by vj to y; if -1, y is preferred by vj to x; and if 0, then vj is indifferent between x and y. Say that an 

individual vj is concerned if 
jvp ≠ 0. A profile of G  is a structure p = (

1v
p ,

2vp , …
nvp …). For each 

profile p and society S, the restriction of p to B(S) is denoted by pS. P|S denotes the set of all profiles 

 
2 To use the set-theoretical parlance, all societies are well-founded. Although non-well-founded societies are possible, 
I shall not discuss them in this paper.   



of S. If k
Sp  and 'k

Sp  are profiles of S, then write k
Sp  ≤ 'k

Sp  if and only if 
j

k
vp  ≤ '

j

k
vp for all vj ∊ B(S). 

Write also k
Sp  < 'k

Sp  if k
Sp  ≤ 'k

Sp and 
j

k
vp  < '

j

k
vp for at least a vj ∊ B(S). For each profile k

Sp  I shall 

denote by - k
Sp  for the profile 'k

Sp  with the property that in it all the preferences of the individuals 

in k
Sp  are reversed: 

j

k
vp  = - '

j

k
vp for all vj in S. 

A social welfare function (swf) is a mapping f: P|S → {1, 0, -1} for each society S ∊ ΩG. 
For each profile pS of a society S, f gives the collective preference of its members over the 
alternatives x and y. Applying a swf f to profiles of societies is an iterative process: if S = {v1, v2 

… vm} is a first-order society, then f(pS) = f(
1vp , … 

mvp ); and if S = {S1, … Sm} is a higher-order 

society, i.e. its members are also societies, then μ is defined by: f(pS) = f(f(
1Sp ), … f(

mSp )). 

I introduce eight voting rules. They are given for first-order societies, but their definition 
can be easily extended to all societies in ΩG. 

- The unanimity rule υ: υ(pS) = 1 if 
jvp  = 1 for all vj ∊ S; υ(pS) = -1 if 

jvp  = -1 for all vj 

∊ S; and υ(pS) = 0 in all the other cases.  

- The consensus rule κ: κ(pS) = 1 if 
jvp ≥ 0 for all vj ∊ S and 

jvp  = 1 for some vj ∊ S; 

κ(pS) = -1 if 
jvp  ≤ 0 for all vj ∊ S and 

jvp  = -1 for some vj ∊ S; and κ(pS) = 0 in all the 

other cases.  

- The (simple) majority rule μ: μ(pS) = sgn(
j

j

v
v S

p
∈
∑ ). The sgn function is given by: if k 

> 0, then sgn(k) = 1; if k < 0, then sgn(k) = -1; and if k= 0, then sgn(k) = 0. 
- The weighted majority rule μw: let w be a function that attaches an integer aj > 0 to 

each voter vj. Then:  μw(pS) = sgn(
j

j

j v
v S

a p
∈
∑ ). 

- The absolute majority rule α: α(pS) = 1 if |{vk ∈ S: 
kvp = 1}| > n/2; α(pS) = -1 if |{vk ∈ 

S: 
kvp = -1}| > n/2; and α(pS) = 0 in all the other cases.  

- The chairperson tie-breaking rule ch: if v1 ∈ S is the chairperson, then ch(pS) = 1 if 

μ(pS) = 1; ch(pS) = -1 if μ(pS) = -1; and ch(pS) = 
1v

p  if μ(pS) = 0. 

- The minimum rule Min: Min(pS) = min (
1vp , … 

nvp ) 

- The maximum rule Max: Max(pS) = max (
1vp , … 

nvp ) 



In a non-technical language, given an agenda consisting in exactly two alternatives x and 
y, the unanimity rule υ selects x if all the members of the group strictly prefer x to y. The consensus 
rule κ selects x if no member of the group is against it (i.e. no voter strictly prefers y) and at least 
a member of the group strictly prefers x. The simple majority rule μ selects x if the members of the 
group who strictly prefer it are more numerous than the members of the group who strictly prefer 
y (and similarly for y). In all the cases when the corresponding conditions are not satisfied, the 
three rules give group indifference. The weighted majority rule differs from the simple majority in 
that voters are assigned different numbers of votes. By the absolute majority rule α an alternative 
is preferred if more than half of the members of the society strictly prefer it. According to ch, the 
group preference is decisive except in cases when, by the simple majority rule, the group is 
unconcerned; in that case the chairperson makes the final choice. The maximum rule Max takes 
the most favorable individual preference for x, and the minimum rule Min takes the least favorable 
individual preference for it. 

I shall use superscripts to indicate the number of members of the society S to which the swf 
f . Thus, fk indicates that the rule applies to profiles of a society formed of k members; in particular, 
f2 applies to profiles of a society formed of just two members. Note that if S has exactly two 
members, then for all profiles pS the absolute majority rule α coincides with the unanimity rule υ, 
and the simple majority rule μ coincides with the consensus rule κ:  

υ2(pS) = α2(pS) 
μ2(pS) = κ2(pS) 

 The following matrixes describe this situation 
  



 

Matrix 1a 

μ2(
1 2{ , }v vp ) = 

κ2(
1 2{ , }v vp ) 

2vp  

1 0 -1 

 

1v
p  

1 1 1 0 

0 1 0 -1 

-1 0 -1 -1 

 
 

Matrix 1b 

υ2(
1 2{ , }v vp ) = 

α2(
1 2{ , }v vp ) 

2vp  

1 0 -1 

 

1v
p  

1 1 0 0 

0 0 0 0 

-1 0 0 -1 

  

Swfs may satisfy certain properties. Here is a collection of properties I shall appeal to 
below: 

- Strong Pareto (SP). If pS is such that at it 
jvp ≥ 0 for all vj ∊ S and 

jvp = 1 for some vj 

∊ S, then f(pS) = 1. 

- Monotonicity (Mon). For any society S and any two profiles 1
Sp  and 2

Sp  of it,  if 1
Sp  

≥ 2
Sp , then f( 1

Sp ) ≥ f( 2
Sp ). 

- Neutrality (Neu). For any society S and any profile pS of it, f(pS) = - f(-pS). 

- Anonymity (A). For any society S and any two profiles 1
Sp  and 2

Sp  of it, where the 

voters’ preferences in 2
Sp  are a permutation of the voters’ preferences in 1

Sp , f( 1
Sp ) = 

f( 2
Sp ).  

- Responsiveness (R). For any society S and any two profiles 1
Sp  and 2

Sp  of it, if 2
Sp  >  

1
Sp and f( 1

Sp ) ≥ 0, then f( 2
Sp ) = 1. 

- Non-zigzaggedness (NZ). There is no zigzag sequence3 1
Sp ,  2

Sp , … m
Sp  of profiles 

of S such that: 1) f( k
Sp ) = 0 for each k (k = 1, …n); and 2) 1

Sp = - m
Sp . 

 

 
3 A sequence 1

Sp ,  2
Sp , … m

Sp  of profiles of a society S is zigzag if k
Sp  > 1k

Sp +  or 1k
Sp + > k

Sp  for each k (k = 1, … 
m – 1). The property NZ was introduced in Fine (1972). 
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Given a set X of properties of swfs, I shall denote by ΦX the collection of all swfs that 

satisfy X on 1
GΩ .  

Finally, I introduce a core notion. Say that a swf f is reducible to a swf g if for each society 
S there is some society σS such that 1) B(σS) ⊆ B(S); and 2) for all profiles pS of S we have: f(pS) = 

g(
S

pσ ). In this case I shall also say that f can be expressed in terms of g. Sections 3 and 4 of the 

paper will focus on applications of this notion.  
To make the presentation simpler, all the proofs of the theorems and lemmas will be 

collected in Appendix 1.  
 
2. Moving to higher-order domains 
 
A striking fact is that it is possible for a swf f to satisfy a property when applied to profiles 

of first-order societies but fail to satisfy it in the case of higher-order societies4. Take for example 

Responsiveness (R). The majority rule μ satisfies it on the set 1
GΩ  of first-order societies, and was 

used by May (1952) to characterize it. But take the second-order society S = {{v1, v2}, v3}. Suppose 

that at 1
Sp  we have: 

1vp   = 
2vp  = -1 and 

3vp  = 1. Then μ( 1
Sp ) = 0. Next, suppose that at 2

Sp  we 

have: 
1vp   = 0, 

2vp  = -1 and 
3vp  = 1. This profile differs from 1

Sp  in that v1 became more favorable 

to the alternative x. We get again μ( 2
Sp ) = 0. But 2

Sp  > 1
Sp  and R entails that μ( 2

Sp ) = 1 – 

contradiction. So, in this case μ violates R. 
In his characterization of μ May also appealed to Anonymity (A). But μ does not satisfy A 

on higher-order domains. To see this, take the example of the society S = {i1, {i1, i2}, {i1, i3}}. 
Observe that for each profile pS of S the preferences of the voters i2 and i3 count only if the voter 
i1 is unconcerned; in all the other cases the society’s preference is exactly the preference of i1. So 
i1 enjoys a special status in S and consequently Anonymity fails.  

Another difference in the behavior of a swf when applied to first-order and higher-order 
societies is this. Let me introduce the concept of f-synonymy: two societies S1 and S2 are f-

 
4 This approach relies on a number of assumptions: first, the same individual voter is allowed to be a member of 
different societies in the hierarchy. Secondly, an individual voter votes the same way in every society she is a member 
of. Third, the councils may be of different sizes or complexity. However, these assumptions may be questioned. It is 
known that in mass elections the constituencies are disjoint, i.e. no voter is allowed to belong to more than one society. 
Moreover, an individual voter may vote differently in different committees (Sengupta: 1974). Third, the appeal I shall 
make to very complex higher-order societies may look unintuitive and awkward. Although second-order societies are 
easy to manage, it is difficult to make sense of more complex ones. I agree with this observation; my use of extremely 
complex higher-order societies is motivated only by their usefulness in proving technical results. 
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synonymous, and write S1 ≈f S2 for this, if for each profile pG it holds that f(
1Sp ) = f(

2Sp ). The f-

synonymy relation is very strong. We can prove that a large class of swfs have the property that in 
the case of first-order societies f-synonymy is an individuating criterion: any two f-synonymous 
societies are identical. In other words, if two societies are different, then there is a profile in which 
f gives different values for the two societies. 

 

Theorem 1. Suppose that the swf f ∈ Φ{UC, IISo} (i.e. f satisfies the two properties UC and 
IISo). If S1 and S2 are first-order societies, then S1 ≈f S2 if and only if S1 = S2. 

Unconcernedness (UC). If 
ivp = 0 for all vi ∊S, then f( Sp ) = 0. 

Independence of Indifferent Societies (IISo). If f( Sp ) = 0 and vj ∉ S, then f(

{ }∪ jS vp ) = 
jvp . 

 

We can immediately check that μ is in Φ{UC, IISo}, and so if S1 and S2 are in 1
GΩ , then S1 ≈μ 

S2 implies S1 = S2. However, this implication does not hold for higher-order societies. For example, 
we have that {{v1, v2}, v1} ≈μ {v1, {v1}, v2} (Batra and Pattanaik 1972, fn. 8), which means that 
two different higher-order societies can still be μ-synonymous. Thus, on higher-order domains the 
simple majority rule fails to remain an identifying criterion. 

In this paper the following lemma has a pivotal role. The four properties it proves focus on 
sets of subsocieties resulting from S by removing one of its members5. Part (a) states that if at S 
the rule µ favors some alternative, then at least one subsociety of S favors that alternative and no 
subsociety favors the opposing one. By (b), if S is unconcerned, then the number of subsocieties 
favoring one alternative equals the number of subsocieties favoring the opposing one. Part (c) 
states that instead of asking the n voters in S, one could equivalently ask the n possible societies S-

j, each formed of n - 1 voters, and form the aggregate preference of their aggregate preferences6. 
The property described in (d) states that we can take only n – 1 of these subsocieties, form their 
aggregate preference and finally aggregate it with the preference of the remaining subsociety, as 
an equivalent of simply aggregating the preferences of the n voters in S. 
 

 
5 Note that although S is taken as a first-order society in the formulation of the lemma, in fact the result can be 
generalized to the cases when its members are societies.  
6 Woeginger (2003) called this property “Reducibility to Subsocieties”, and took it as an axiom in his characterization 
of µ. 
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Lemma 1. Let S = {v1, v2, … vn}, with n ≥ 2. Put: Γ = {S-1, S-2, … S-n} and Γ-j = Γ – {S-j}. 
Then:  

a) If μ(pS) = 1, then μ( jS
p − ) ≥ 0 for each j = 1, …n and μ( jS

p − ) = 1 for some j. If μ(pS) 

= -1, then μ( jS
p − ) ≤ 0 for each j = 1, …n and μ( jS

p − ) = -1 for some j. 

b) If μ(pS) = 0, then |{S-j: μ( jS
p − ) = 1}| = |{S-j: μ( jS

p − ) = -1}|. 

c) μ(pS) = μ(pΓ). 

d) μ(pS) = μ( { , }j jS
p − −Γ

). 

 
3. Reducing swfs 
 
This section and the next one form the core of the paper. They are dedicated to applications 

of the notion of reducibility of a swf to another swf. Remind that by definition a swf f is reducible 
to a swf g (or: f can be expressed in terms of g) if for each society S there is some society σS such 

that B(σS) ⊆ B(S) and for all profiles pS of S we have: f(pS) = g(
S

pσ ). This means that one always 

gets the same results if she applies f to a (first-order) society or iteratively applies g to a more 
complex society. Two types of results will be discussed. First, we may try to establish the 
collection of all swfs reducible to a given swf. In this section this will be proved for the simple 
majority rule μ and the consensus rule κ. Second, we can compare the usual formulation of a swf, 
which applies to a society formed of an arbitrary number of n members, with its binary restriction, 
i.e. its applications to societies formed of only two members. In the next section I shall prove that 
for some swfs the n-ary case can be reduced to the binary one. The simple majority rule μ, among 
others, has this property. 

Nearly half of a century ago Murakami (1966; 1968), Fishburn (1971) and Fine (1972) 
proved that the simple majority rule μ has the amazing capacity to reduce a large collection of 
swfs. Their main results are expressed in the following theorem7. 

 
Theorem 2.  

a) A swf f is reducible to μ if and only if f ∈ Φ{Neu, Mon, NZ}. 

b) If G includes two ideal voters 1+ and 1-, then f is reducible to μ if and only if f ∈ 
Φ{Mon}. 

 
7 The two parts of the theorem are presented in Fine (1972). Fishburn (1971) appeals to a rather different property (his 
condition 7) to prove part (a). 
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The “ideal” voters 1+ and 1- are characterized by the fact that their preferences are profile-

independent: for each profile pS we have p +1
 = 1 and p −1

 = -1. The voter 1+ always prefers x to y 

and the voter 1- always prefers y to x. We can for example imagine8 that whenever the proposals 
concern a choice between privatize/keep in state property, there are people who, given their strong 
ideological commitments, always vote 1 and people who always vote -1. If G includes the two 
ideal voters, then the absolute majority rule α, the unanimity rule υ and the consensus rule κ are 
reducible to μ, because they all are monotonic. In Appendix 1 I show as an example how α can be 
defined in terms of μ on this extended domain9. However, if ideal voters are not allowed, α and κ 
cannot be reduced to μ10.  

I shall give three simple examples to make an idea of how this reducibility works. Observe 
that given a first-order society S we start with, the new society σS we construct is a higher-order 
one.  

Example 1. The weighted majority rule μw can be expressed in terms of µ. Consider a small 
society S = {v1, v2, v3} where v3 has one vote, v2 has two votes and v3 has three votes. We construct 

a new society σS = {v1, v2, {v2}, v3, {v3}, {{v3}}} with six members. Clearly, μw(pS) = μ(
S

pσ ) for 

all profiles of S.  

Example 2. Consider the chairperson tie-breaking rule ch. Let v1 ∈ S and put σS = {v1, S, 
{S}}. We can immediately check that ch is reducible to µ, i.e. for all profiles pS of S it holds that 

ch(pS) = μ(
S

pσ ). For if μ(pS) = 1, then μ(
S

pσ ) = μ(
1v

p , μ(pS), μ(μ(p{S}))) = μ(
1v

p , 1, μ(1)) = μ(
1v

p

, 1, 1) = 1; and if μ(pS) = 0, then μ(
S

pσ ) = μ(
1v

p , 0, μ(0)) = μ(
1v

p , 0, 0) = μ(
1v

p ) = 
1v

p . Quesada 

(2013b) called ch “majority rule with a chairman” and provided a set of axioms to characterize it. 

 
8 An amusing example of such an “ideal” voter was noticed a few years ago by Der Spiegel. Dan Dumitru Zamfirescu, 
a Romanian member of the European Parliament (in the period 2013 – 2014), always voted “Yes”, even when the 
proposals were mutually contradictory. He voted 541 times “Yes”. See 
http://www.spiegel.de/international/europe/suspicious-voting-record-of-romanian-mep-dumitru-zamfirescu-a-
929117.html. 
9 This is a special way of relating the simple and the absolute majority rules.  In general, as remarked by Sanver (2009), 
relativism and absolutism are essentially incompatible conceptions of majoritarianism. 
10 Fine (1972) argued that the reason for this is that κ also does not satisfy the non-zigzaggedness property. Fine gives 
the following example: if the group has exactly three members, then the sequence: 11-1; 1-1-1; 1-11; -1-11 is zigzag, 
while the value of κ for all the members of the sequence remains unchanged. The same conclusion is in Fishburn 
(1971). Consider Fishburn’s condition 7. Let D1 = 11-1; D2 = 1-11; D3 = -111. We have D1 > -D2, D2 > -D3, D3 >  -

D1. We get 
3

1
1=
∑ k

k
D  = 2 > 0, while κ(Di) = 0 for all i – in contradiction with his Condition 4. 

http://www.spiegel.de/international/europe/suspicious-voting-record-of-romanian-mep-dumitru-zamfirescu-a-929117.html
http://www.spiegel.de/international/europe/suspicious-voting-record-of-romanian-mep-dumitru-zamfirescu-a-929117.html
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The proof that ch is reducible to majority gives a simpler and even more intuitive explanation of 
the connection between it and μ. 

Example 3. Suppose that the Parliament P of a state is bicameral: it consists in the Chamber 
of Deputies D and the Senate S. P has the following rule, call it ρ: a law is passed if it is voted by 
both chambers; but if the two chambers have opposing resolutions, then to pass the law a vote of 
the joined chambers is required11. Starting with P, construct a more complex society σP as follows: 

σP = {{D, S}, {{D, S}}, D ∪ S}. Clearly, we have: ρ(pP) = μ( p
Pσ

). 

Now suppose that the rule ρ is modified as follows. We want to give an additional voting 
power to the members of the Senate S: when the two chambers are joined, each senator is attached 
a number a ≥ 1 of votes (in the simplest case, two votes). Appealing to the example 1 above, a 
society σP can then be easily constructed. Call Ar this new rule. Its name is a tribute to Aristotle: 
as formulated here, it is a simple version of a general rule formulated by Aristotle in his Politics 
(VI 3, 1317a–1318b) in his attempt to describe collective decisions in a democratic polis (Miroiu 
and Partenie: 2019). Here S corresponds to the class of rich members of a polis, and D to the class 
of poor members of it. 

The main results of this section are expressed by theorems 3 and 4 below:  
 
Theorem 3. The simple majority rule μ is reducible to the consensus rule κ. 
 
Theorem 3 entails that a result proved by Fine (1972) can be modified to obtain a much 

more important one: a characterization of the swfs reducible to the consensus rule κ alone. Fine 
showed (see his theorem 4) that a swf f is reducible to a combination of the simple majority rule 
and the consensus rule if and only if it is neutral, monotonic and satisfies the positive strong Pareto 
property. However, since Theorem 3 holds we get: 

 

Theorem 4. A swf f is reducible to the consensus rule κ if and only if f ∈ Φ{Neu, Mon, SP}
12. 

 
Remark. Theorem 3 helps us compare theorems 2 and 4. They define two classes of swfs: 

those in Φ{Neu, Mon, NZ} are reducible to μ and those in Φ{Neu, Mon, SP} are reducible to κ. They differ 
because as we already noted κ does not satisfy NZ and so it is not reducible to μ. But we can easily 

 
11 This rule was used in the Romanian Parliament in the period 1991 – 2003. 
12 Given neutrality, we can replace the strong Pareto property with its positive part. 
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see that if Neu and Mon hold, then NZ entails SP (see Appendix 1 for this). So, the class of of 
swfs reducible to μ is included in the class of swfs reducible to κ:  

Φ{Neu, Mon, NZ} ⊆ Φ{Neu, Mon, SP}. 

By theorem 4 all swfs satisfying the three standard conditions Neutrality, Monotonicity 
and Strong Pareto are proved to be expressible in terms of the consensus rule κ: instead of 
appealing to them we may construct some new higher-order society and apply κ to its profiles. 
Theorem 3 highlights a special case: it shows that although κ is not reducible to μ, conversely μ is 
reducible to κ; therefore, by focusing on a more complex society and appealing to κ we get the 
same collective preference as applying μ to a simpler first-order society.  

However, the received view in the history of political thought is that unanimity/consensus 
and majority are fundamentally distinct aggregation rules. They have quite different logical 
structures and have different proper applications. The standard argument runs as follows. First, 
concerning consensus: “The early theorists (Hobbes, Althusius, Locke, and Rousseau) did assume 
consensus in the formation of the original contract. They did so because the essence of any 
contractual arrangement is voluntary participation, and no rational being will voluntarily agree to 
something which yields him, in net terms, expected damage or harm” (Buchanan, Tullock 1999, 
248 – 249). The unanimity and consensus rules have their defining application at the constitutional 
stage. But, second, majority is located in another set of circumstances. “Excepting this original 
contract, the vote of the majority always binds all the rest” (Rousseau 2002, Bk. 4, Ch. 2, 229 – 
230). And Locke: “When any number of men have so consented to make one community or 
government, they are thereby presently incorporated, and make one body politic, wherein the 
majority have a right to act and conclude the rest” (Locke 2003, § 95, p. 142).  

Rousseau famously discussed this issue with respect to the decision procedures used by the 
main political institutions (notably the Diet) in his days Poland. He argued that the liberum veto13 
“would be less unreasonable if it fell uniquely on the fundamental points of the constitution”. It is 
legitimated by the natural right of societies. It requires unanimity “for the formation of the body 
politic and for the fundamental laws that pertain to its existence”. But when one has not to do with 
such genuinely fundamental laws, other decision procedures are much more appropriate. Different 
types of (super)majorities can be used to pass legislation or to decide on important matters of state; 
simple plurality (our rule μ, when only two alternatives are available) is sufficient in cases of 
elections and other routine and momentary business, which depend on the “vicissitude of things” 
(Rousseau 2005, 203 – 204). In all these cases, it is argued, it is not practical to appeal to unanimity 
or consensus. 

 
13 This principle applies to both unanimity (our rule υ) and consensus (our rule κ). 
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However, Theorem 3 shows that consensus and simple majority are not different in nature: 
simple majority is reducible to consensus. To vote by majority is just to vote by consensus in a 
more complex way. Applying of μ to a first-order society is equivalent to numerous iterative 
applications of κ to diverse nested higher-order societies. Instead of an iterate vote by consensus 
in an extremely intricate and artificially constructed society, the use of a just one step voting by 
the majority rule μ in a first-order society is much simpler, more intuitive and less costly. 

 
4. Extending swfs 
 
In this section I focus on another application of the notion of reducibility of a swf to another 

swf. Say that f can be extended (to the n-ary case) when fn can be expressed in terms of f2. Some 
swfs can be extended, while others fail to satisfy this property. A first example concerns associative 

swfs. A swf f is associative if f(
1 2 1{ , ,... , }n ni i i ip

−
) = f2(fn-1(

1 2 1{ , ,... }ni i ip
−

),
ni

p ) for each S = {i1, i2, … in}. The 

following proposition is immediate: 
 
Theorem 5. If f is associative, then fn can be expressed in terms of f2.  
 
The swfs Min2, Max2 and υ2 are associative, therefore they can all be extended to the n-ary 

case. However, some swfs cannot be extended: we cannot find any procedure to define them in 
terms of their binary parts. Two examples are the absolute majority rule α and the consensus rule 
κ: 

 
Theorem 6. The binary swfs α2 and κ2 cannot be extended. 
 
Clearly, the simple majority rule μ is not associative. Therefore, prima facie it cannot be 

extended. Nevertheless, it is possible to devise a more complex procedure to show that μn can be 
expressed in terms of μ2. This is the content of Theorem 7 below.  

 
Theorem 7. μ2 can be extended to μn. 

 
Corollary: the fact that μ2 = κ2 and theorem 7 together entail theorem 3.  
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One implication of Theorem 7 is that since μn can be defined in terms of μ2, to characterize 
the simple majority rule μ we only need to do this for its binary part. Below I give such a very 
weak characterization of μ2.  

 
Theorem 8. The binary simple majority rule μ2 is the only swf which satisfies the following 
four axioms: 

Faithfulness (F). f1( { }kvp ) = 
kvp . 

Binary Unanimity (BU). If f1(
1{ }vp ) = f1(

2{ }vp ) = a ∈ {1, -1}, then f1(
1 2{ , }v vp ) = a. 

Simple Equal Treatment (SET). If f1(
1{ }vp ) = a ∈ {1, -1} and f1(

1{ }vp ) = -f1(
2{ }vp ), then 

f2(
1 2{ , }v vp ) = 0. 

Independence of Indifferent Singletons (IIS). If f1(
1{ }vp ) = 0, then f2(

1 2{ , }v vp ) = f1(
2{ }vp ). 

 
The axioms are inspired from Xu and Zhong (2010), but are much weaker than theirs. 

Axiom F connects the value of the society {vk} formed of just one individual ik with the preference 
of this individual: by F, the society must follow the preference of its member. The other axioms 
display a quite different logical form: rather than connecting individual preferences with social 
preferences, they connect the values of the swf at distinct societies. By BU if two societies are 
singletons and they prefer the same alternative, then their union will have the same preference. 
SET states that if they have opposite preferences, then their union must be unconcerned. Finally, 
IIS states that if one of them is unconcerned, then the preference of the union depends only on the 
preference of the other society (we may also note that IIS is weaker than the axiom ISSo defined 
in section 2 above). 

Observe that when F holds the other three axioms take a much simpler (and more intuitive) 
form:  

BU*. If 
1v

p  = 
2vp =  a ∈ {1, -1}, then f1(

1 2{ , }v vp ) = a. 

SET*. If 
1v

p  = -
2vp  ≠ 0, then f2(

1 2{ , }v vp ) = 0. 

IIS*. If 
1v

p  = 0, then f2(
1 2{ , }v vp ) = 

2vp . 

 
For example, the axiom SET* states that if two concerned individuals v1 and v2 have 

opposite preferences, then the society consisting in the two individuals is unconcerned.  
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A final note: in line with Xu and Zhong (2010), this characterization of μ2 appeals to 
properties that do not allow for changes in the individual preferences: they appeal to a single 
profile, but admits moves from one society to another. It differs from other characterization like 
May (1952) and Campbell and Kelly (2000), who considered a single society but multiple profiles 
of it, and from Asan and Sanver (2002) and Woeginger (2003), who allowed multiple societies 
and multiple profiles of them.  
 

5. Proofs 
 
Proof of Theorem 1. Suppose that f satisfies UC and IISo and also that S1 ≠ S2. We show 

that S1 ≉f S2. Let 1
Gp  be a profile with the property that 1

ivp = 0 for all vi ∊ S1 ∪ S2. Since f satisfies 

UC, we get f(
1

1
Sp ) = f(

2

1
Sp ) = 0. By S1 ≠ S2 there is some vj such that vj ∊S1, but vj ∉ S2 (or, 

equivalently: there is some vj such that vj ∊S2, but vj ∉ S1). Now let 2
Gp  differ from 1

Gp  only in that 
2

jvp  ≠ 0. We have again f(
2

2
Sp ) = 0 by UC. On the other hand, f(

1

2
{ }− jS vp ) = 0 by UC and so f(

1

2
Sp ) 

= 2
jvp ≠ 0 by IISo – which contradicts S1 ≈f S2. The proof that S1 ≈f S2 if S1 = S2 is trivial. 

 
Proof of Lemma 1. Let S = {v1, v2, … vn}. Write s for the number of members of S with the 

property that 
jvp = 1; m for the number of members of S with the property that 

jvp = -1, and z for 

the number of members of S with the property that 
jvp = 0. We have s + m + z = n. 

For part (a), we have by definition that μ(pS) = sgn(
1

k

n

v
k

p
=
∑ ). If μ(pS) = 1, it follows that 

1
k

n

v
k

p
=
∑  = 

1=
≠

∑ k

n

v
k
k j

p +
jvp  ≥ 1. Note that we can have μ( jS

p − ) < 0 only if sgn(
1=
≠

∑ k

n

v
k
k j

p ) = -1, i.e. 
1=
≠

∑ k

n

v
k
k j

p  

< 0; but in this case  
1=
≠

∑ k

n

v
k
k j

p + 
jvp < 1 for each value of  

jvp  – contradiction. So we established that 

μ( jS
p − ) ≥ 0 for each j = 1, …n. But we cannot have μ( jS

p − )  = 0 for each j.  To prove this, consider 

the following cases:  

1) 
jvp = 1 for all j. Then by definition μ( jS

p − ) = 1 for each j; 

2)  
jvp = 0 for all j. Then by definition μ(pS) = 0 – contradiction; 
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3) 
jvp  ≥ 0 for all j and 

ivp  = 0 for some i. Then clearly μ( iS
p − ) = 1; 

4) there is some j such that 
jvp < 1. Observe that μ(pS) = 1 entails that sgn(

1=
≠

∑ k

n

v
k
k j

p ) = 1 and so 

μ( jS
p − ) = 1. 

For part (b), note first that we have s = m by definition. If  
jvp = 0, then clearly μ( jS

p − ) = 

0; if 
jvp = 1, then μ( jS

p − ) = -1, because in the number of voters vi in S-j such that 
ivp = 1 is s – 1 < 

m; and if 
jvp = -1, then μ( jS

p − ) = 1, because in the number of voters vi in S-j  such that 
ivp = 1 is m 

– 1 < s. But the number of S-j’s with the property that μ( jS
p − ) = 1 must be equal to the number of 

S-j’s with the property that μ( jS
p − ) = 1, because s  = m. 

To prove part (c), suppose first that μ(pS) = 1. Then part (a) gives that that there is no 

member S-j of Γ such that  μ( jS
p − ) = -1 and there is a member S-j of it such μ( jS

p − ) = 1. Then μ(pΓ) 

= 1. Second, suppose that μ(pS) = 0. Part (b) gives that Γ has an equal number of S-j ’s such that μ(

jS
p − ) = 1 and μ( jS

p − ) = -1. Then we also have μ(pΓ) = 0.  

Finally, for part (d) suppose first again that μ(pS) = 1. Clearly, μ( jp −Γ
) ≥ 0, because μ( iS

p −

) ≥ 0 for each member of Γ-j. Part one guarantees that there is some S-i with the property that μ(

iS
p − ) = 1. If it is S-j, then μ( { , }j jS

p − −Γ
) = 1. If it is one of the members of Γ-j, then μ( jp −Γ

) and so μ(

{ , }j jS
p − −Γ

) = 1 because μ( jS
p − ) ≥ 0. Secondly, let μ(pS) = 0. If μ( jS

p − ) = 0, then by part (b)  Γ-j has 

an equal number of S-i’s such that μ( iS
p − ) = 1 and μ( iS

p − )  = -1; therefore μ( jp −Γ
) = 0 and 

consequently μ( { , }j jS
p − −Γ

) = 0. If μ( jS
p − ) = 1, then by part (b)  the number of S-i’s in Γ-j such that 

μ( iS
p − ) = -1 is larger than number of S-i’s in Γ-j such that μ( iS

p − ) = 1; therefore μ( jp −Γ
) = -1. So 

μ( { , }j jS
p − −Γ

) = µ(-1, 1) = 0 = μ(pS) as required.14 

 
Proof that α can be defined in terms of μ on domains including ideal votes. Let S = {v1, v2, 

… vn}. To show this, we first construct two societies S1 and S2: 
S1 = {{v1, 1-}, {v2, 1-}, ... {vn, 1-}, {{v1, 1-}, 1+}, {{v2, 1-}, 1+}, ... {{v2, 1-}, 1+}} 
S2 = {{v1, 1+}, {v2, 1+}, ... {vn, 1+}, {{v1, 1+}, 1-}, {{v2, 1+}, 1-}, ... {{v2, 1+}, 1-}} 

 
14 We can prove dual propositions in a similar way, when values 1 and -1 are mutually replaced. 
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Let s members of S= {v1, v2, … vn} have 
jvp = 1, m members have 

jvp = -1 and z members 

have 
jvp = 0, with s + m + z = n. Observe that when applied to S1 the function μ gives s times 0 

and z + m times -1; and also s times 1 and z + m times 0. So μ(
1Sp ) = 1 if   s > z + m and μ(

1Sp ) < 

1 in all the other cases.  But s > z + m and s + z + m = n entail that s > n/2. Analogously, we have 

that μ(
2Sp ) = -1 when m > n/2 and   μ(

2Sp ) > -1 in all the other cases. Secondly, construct two 

other societies:  
S11 = {1+, {1-, S1}}  
S21 = {1-, {1+, S2}}.  

Clearly, μ(
11Sp ) = 1 if  s > n/2 and μ(

11Sp ) = 0 in all the other cases; and μ(
21Sp ) = -1 if  m 

> n/2 and μ(
21Sp ) = 0 in all the other cases. Finally, put  

σS = {S11, S21}.  

We can easily verify that α(pS) = μ(
S

pσ ).  

 
Proof of Theorem 3. The proof is by induction on the number of members of S. Suppose 

first that n = 2. Let S = {v1, v2}. As already noted, in this care κ(pS) = μ(pS) for all profiles p of S. 
Now let n = 3, i.e. S = {v1, v2, v3}. Clearly, there are profiles at which κ and μ do not coincide. But 
consider the society σS = {S-1, S-2, S-3} = {{v2, v3}, {v1, v3}, {v1, v2}}. We show that:  

μ(pS) = κ( σS
p ) for all p of G. 

This means that we can get μ(pS) by the following procedure: we first calculate the value 
of κ for the three groups, each consisting in two members: κ(

1 2{ , }v vp ), κ(
2 3{ , }v vp ) and κ(

1 3{ , }v vp ). Then 

we calculate the value of κ for the group consisting in these three groups. To show that the value 
we get by iteratively applying κ is the same as μ(pS) the only interesting cases are when: 1) for two 
of the members of S it is the case that 

jvp  ≥ 0 and also  
jvp  = 1 for at least one of these members, 

and for the remaining one it is the case that 
jvp  = -1, and 2) the symmetrical ones when -1 is 

replaced by 1. Note that the construction of the society σS makes the order of the members of S 
irrelevant.  

a) If 
1v

p = 
2vp  = 1 and 

3vp  = -1, then we get κ(
1 2{ , }v vp ) = 1, κ(

2 3{ , }v vp ) = 0 and κ(
1 3{ , }v vp ) = 0, 

so κ( σS
p ) = 1, in agreement with μ(pS). 
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b) If 
1v

p  = 1, 
2vp  = 0 and 

3vp = -1, then we get κ(
1 2{ , }v vp ) = 1, κ(

2 3{ , }v vp ) = -1 and κ(
1 3{ , }v vp ) = 

0, so κ( σS
p ) = 0, again in agreement with μ(pS). 

(The symmetrical cases can be dealt with in an analogous way.)  
Finally let n > 3. By induction it holds for each of the n societies S-j = S - {vj} that there is 

some society −σ jS
 with the property that for all profiles − iS

p of S-j it holds that μ( − iS
p ) = κ(

−σ jS
p ). 

We need to show that there is some society σS with the property that μ(pS) = κ( σS
p ) for all profiles 

pS of S. Put σS = { 1−σ
S

, 2−σ
S

, … −σ nS
}.15 

The proof is trivial for all the cases when 
ivp ≥ 0 for all vi ∊ S or 

ivp ≤ 0 for all vi ∊ S. So 

suppose that 
ivp  = 1 for some vi ∊ S and 

ivp  = -1 for some vi ∊ S. I shall give the proof for the 

cases when |{ vi ∊ S: 
ivp  = 1}| ≥ |{ vi ∊ S: 

ivp  = -1}|, i.e. when µ(pS) ≥ 0. The symmetrical cases 

when |{ vi ∊ S: 
ivp  = 1}| ≤ |{ vi ∊ S: 

ivp  = -1}| can be proved in an analogous way. 

There are two possibilities. First, let μ(pS) = 0. By lemma 1b It follows that |{ vi ∊ S: 
ivp = 

1}| = |{ vi ∊ S: 
ivp  = -1}| = m ≥ 0, where 2m ≤ n. If m = 0, then for all vi it holds that 

ivp  = 0 and 

so κ( σS
p ) = 0 by the definition of κ. If m > 0,  then: a) since there is some vj such that 

jvp =  1 it 

follows that μ( − jS
p ) = -1 because |{ vi ∊ S-j: 

ivp = -1}| > |{ vi ∊ S-j: 
ivp  = 1}|; b)  since there is some 

vj such that 
jvp  =  -1 it follows that μ( − jS

p ) = 1 because |{ vi ∊ S-j: 
ivp  = 1}| > |{ vi ∊ S-j: 

ivp  = -

1}|. By induction, for each S-j we have  μ( − jS
p ) = κ(

−σ jS
p ), so we have κ(

−σ jS
p ) = 1 in some cases 

and κ(
−σ jS

p ) = -1 in other cases, whence by the definition of κ we get κ( σS
p ) = 0, whence κ( σS

p ) 

= μ(pS).  

Second, let μ(pS) = 1. It follows that |{ vi ∊ S: 
ivp = 1}|  = m1 > |{ vi ∊ S: 

ivp  = -1}| = m2.  

Let vj be some member of S. As shown in the proof of lemma 1a we have: i) if 
jvp  = -1, then μ(

− jS
p ) =  1, since clearly |{ vi ∊ S-j: 

ivp  = 1}| > |{ vi ∊ S-j:  
ivp = -1}|; consequently, by induction κ(

−σ jS
p ) = 1. Similarly, observe that: ii) if 

jvp  = 0, then μ( − jS
p ) = 1 and so by induction κ(

−σ jS
p ) = 

 
15 For example, let S = {v1, v2, v3, v4}. Since all S-j have three members, we can apply the above procedure 

and get: 1−σ
S

 = {{v4, v2}, {v2, v3}, {v4, v3}}, 2−σ
S

= {{v1, v4}, {v4, v3}, {v1, v3}}, 3−σ
S

=  {{v1, v2}, {v2, v4}, {v1, 

v4}}and 4−σ
S

= {{v1, v2}, {v2, v3}, {v1, v3}}. Therefore:  
σS = {{{v4, v2}, {v2, v3}, {v4, v3}}, {{v1, v4}, {v4, v3}, {v1, v3}}, {{v1, v2}, {v2, v4}, {v1, v4}}, {{v1, v2}, {v2, 
v3}, {v1, v3}}} 
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1. Finally, iii) if 
jvp  = 1, then we must have μ( − jS

p ) ≥ 0 and thus κ(
−σ jS

p ) ≥ 0. There are two 

subcases: 

a) If m2 > 0 (i.e. there is at least a vj with the property that 
−σ jS

p = -1), then there is some 

S-j such that μ( − jS
p ) =  1, which entails κ(

−σ jS
p ) = 1, and so κ( σS

p ) = 1 = μ(pS).  

If m2 = 0 (i.e. there is no vj with the property that 
jvp = -1), it follows that there is some vj 

∊ S such that 
jvp = 1 and for all the other vj ∊ S it holds that 

jvp ≥ 0. If 
jvp  = 1 for all vj ∊ S, then 

given that n > 3, we must have m1 – 1 > 0 and thus  μ( − jS
p ) = 1 for all S-j. Consequently, κ(

−σ jS
p ) 

= 1, and so κ( σS
p ) = 1 = μ(pS). But if 

jvp = 0 for some vj ∊ S, then by induction (see the argument 

in the second case above) μ( − jS
p ) = 1. We can again conclude that κ(

−σ jS
p ) = 1, whence κ( σS

p ) = 

1 = μ(pS). 
 
Remark on theorem 4: if Neu and Mon hold, then NZ entails SP. Suppose that f satisfies 

NZ. Then if at a profile pS we have that f(pS) = 0, there must be a zigzag sequence 1
Sp ,  2

Sp , … 
m
Sp  of profiles of S such that f( k

Sp ) = 1 for some profile k
Sp  in this sequence (this is so because f 

satisfies Neu). Then by Mon we get that f( '
Sp ) = 1 at a profile '

Sp  where 
jvp ≥ 0 for all vj ∈ S and 

jvp = 1 for some vj ∈ S.     

 
Proof of Theorem 5. We need to show that for each S there is some (higher-order) binary 

society σS such that fn(pS) = f2(
S

pσ ). The society σS is recursively constructed as follows:  

i) if S = {i1, i2, i3}, then σS = {{i1, i2}, {i3}}; 
ii) if S = {i1, … in}, then σS = { { }nS i−σ , {in}}. 

We can check that since the swfs Min2, Max2 and υ2 are associative, they can all be 
extended to the n-ary case. Consider the unanimity rule υ. We can easily see that it satisfies 

associativity: υn(
1 2 1{ , ,... , }n ni i i ip

−
) = υ2(υn-1(

1 2 1{ , ,... }ni i ip
−

),
ni

p ). Suppose that υn(
1 2 1{ , ,... , }n ni i i ip

−
) = 1. By 

definition, this means that 
ki

p  = 1 for all k. But then υn-1(
1 2 1{ , ,... }ni i ip

−
) = 1 and also 

ni
p = 1. Therefore 

υ2(υn-1(
1 2 1{ , ,... }ni i ip

−
),

ni
p ) = υ2(1, 1) = 1. The case when υn(

1 2 1{ , ,... , }n ni i i ip
−

) = -1 is similar. If υn(
1 2 1{ , ,... , }n ni i i ip

−

) = 0, we must have at least two individuals ik and ik' such that 
ki

p  ≠
'ki

p . If both are in {i1, … in-1}, 
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then υn-1(
1 2 1{ , ,... }ni i ip

−
) = 0 and so υn(

1 2 1{ , ,... , }n ni i i ip
−

) = υ2(υn-1(
1 2 1{ , ,... }ni i ip

−
),

ni
p ) = υ2(υn-1(0,

ni
p ) = 0. If one 

of them, e.g. ik', is 
ni

p , then we have three cases:  

1) 
ni

p = 1. Then if 
ki

p = -1 we may have either υn-1(
1 2 1{ , ,... }ni i ip

−
) = -1 or υn-1(

1 2 1{ , ,... }ni i ip
−

) = 0. But in both subcases υ2(υn-1(
1 2 1{ , ,... }ni i ip

−
),

ni
p ) = 0. If 

ki
p = 0, then υn-

1(
1 2 1{ , ,... }ni i ip

−
) = 0 and again υ2(υn-1(

1 2 1{ , ,... }ni i ip
−

),
ni

p ) = υ2(0, 1) = 0. 

2) 
ni

p = -1. This case is analogous to the first case. 

3) 
ni

p = 0. Then we always get υ2(υn-1(
1 2 1{ , ,... }ni i ip

−
), 0) = 0. 

 
Proof of Theorem 6. I shall start with α. It suffices to show that α2 cannot be extended to 

α3. So, let S = {i1, i2, i3}. We prove that there is no higher order society σS such that for all profiles 

S it holds that α3(pS) = α2(
S

pσ ) and σS is binary. Observe that B(σS) = B(S), i.e. the only individuals 

that may occur in σS are i1, i2 and i3. Suppose to the contrary that there is such a society σS and let 

a profile 1
Sp  of it be given by: 

1i
p  = 0; 

2i
p = 1; 

3i
p = 1. By the definition of α we must have α3(pS) 

= 1. Now suppose that there is some society S' nested in σS in which there is an occurrence of i1. 

Since 
1i

p  = 0 we get α2(pS') = 0 and by iterating the applications of α2 it follows that α2(
S

pσ ) = 0 – 

contradiction. So σS cannot contain any occurrence of i1. Similarly, if we take into account the 

profile 2
Sp of σS defined by: 

1i
p  = 1; 

2i
p = 0; 

3i
p = 1 we must conclude that i2 does not occur in σS. 

Finally, focusing on the profile 3
Sp  of σS defined by: 

1i
p  = 1; 

2i
p = 1; 

3i
p = 0 we get that i3 does not 

occur in σS. It follows that σS can only be the empty set ∅. But by definition for any profile of ∅ 

we have α(p∅) = 0 – contradiction. Therefore, no σS satisfies the property that α3(pS) = α2(
S

pσ ) for 

all profiles pS. 
Moving to κ, it is again sufficient to show that κ3 is not definable in terms of κ2. Since κ2 

= μ2, we need to show that for any S = {v1, v2, v3} there is no binary society σS such that κ3(pS) = 
κ2( σS

p ) for all profiles pS of S. The proof has two steps. 

Step 1. We show that function κ2 is neutral on the domain of higher order societies.  = -
2

2
vp

. Clearly, we have κ2(
1 2

1
{ , }v vp ) = -κ2(

1 2

2
{ , }v vp ). Now suppose that σκ = { 1

λσ , 2
λσ } where both 1

λσ and 
2
λσ are binary societies. By induction, if 

1

1
vp = -

1

2
vp and 

2

1
vp = -

2

2
vp  and 

3

1
vp = -

3

2
vp  then κ2( 1

1p
λσ

)= -
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κ2( 1
2p
λσ

) and κ2( 2
1p
λσ

)= -κ2( 2
2p
λσ

). Then κ2( 2p
λσ

) = κ2(κ2( 1
2p
λσ

), κ2( 2
2p
λσ

)) = κ2(-κ2( 1
1p
λσ

), - κ2( 2
1p
λσ

)) = 

- κ2(κ2( 1
1p
λσ

), κ2( 2
1p
λσ

)) = - κ2( 1p
λσ

). 

Step 2. Suppose that at profile 1
Sp  we have 

1

1
vp = 1 and 

2

1
vp = 1 and 

3

1
vp = -1. By definition, 

κ3( 1
Sp ) = 0. Consider also three other profiles defined as follows16:  

1) at 2
Sp  we have that 

1

2
vp = 1 and 

2

2
vp = -1 and 

3

2
vp = -1; we get κ3( 2

Sp ) = 0. 

2) at 3
Sp  we have that 

1

3
vp = 1 and 

2

3
vp = -1 and 

3

3
vp = 1; we get κ3( 3

Sp ) = 0. 

3) at 4
Sp  we have that 

1

4
vp = -1 and 

2

4
vp = -1 and 

3

4
vp = 1; we get κ3( 4

Sp ) = 0. 

Observe that 1
Sp  > 2

Sp  < 3
Sp  > 4

Sp  = - 1
Sp . On the other hand, if κ3 is definable in terms of 

κ2, then there must be some society σS  = { 1σS , 2σS } where both 1σS  and 2σS  are binary societies 

and κ3( Sp ) = κ2( σS
p )  for all profiles Sp . The idea of the proof is to show that these conditions 

imply a contradiction. 

First, suppose that both 1σS  and 2σS  are binary first-order societies, i.e. they are subsets of 

S. Since in each of the four profiles two voters have 1 and one voter has -1, it follows that any 
combination of them to form binary societies must give 1 for one combination and 0 for the other, 

so κ2( σS
p ) = κ2(κ2( 1σS

p ), κ2( 2σS
p )) = κ2(1, 0) = 1 ≠ κ3( Sp ) = 0 – contradiction. Second, suppose 

by induction that 1σS  and 2σS  are binary higher-order societies. Since κ2 is monotonic, we must 

have for each profile 
σS

kp  (k = 1, …4) that17: i) κ2( 1σS

kp ) ≤ κ2( 1
1+

σS

kp ) and κ2( 2σS

kp ) ≤ κ2( 2
1+

σS

kp ), or ii) 

κ2( 1σS

kp ) ≥ κ2( 1
1+

σS

kp ) and κ2( 2σS

kp ) ≥ κ2( 2
1+

σS

kp ). On the other hand, κ3( k
Sp ) = κ3( 1+k

Sp ) = 0. So κ2( 1σS

kp

) = κ2( 1
1+

σS

kp ) and κ2( 2σS

kp ) = κ2( 2
1+

σS

kp ). Therefore, for each k we get: 

κ2( 1σS

kp ) = κ2( 1
1
σS

p ) and κ2( 2σS

kp ) = κ2( 2
1
σS

p ). 

But by induction we have κ2( 1σS

kp ) ≠ 0 or at least κ2( 2σS

kp ) ≠ 0. Suppose for example that κ2(

1σS

kp ) ≠ 0. Then we get κ2( 1
1
σS

p ) = κ2( 1
4
σS

p )≠ 0. However, we noticed already that 1
Sp  = - 1

Sp , which 

contradicts the neutrality of κ. 
 

 
16 This argument is inspired by the necessity part of Fine’s (1972) proof of his theorem 3. 
17 If k = 4, we put k + 1 = 1.  
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Proof of Theorem 7. We show that for each society S ⊆ G formed of n members there is 
some (higher-order) society σS such that 1) σS is binary; and 2) for all profiles pS of S we have: 

μn(pS) = μ2(
S

pσ ). Given that the profile pG is kept constant in the proof, whenever possible we 

shall omit references to it. The proof of the theorem is by induction on the number of members of 
S. For n = 2, the proof is trivial. For n = 3, let S-1 = {v2, v3}, S-2 = {v1, v3}, S-3 = {v1, v2}. Further, 
put Γ-3 = {S-1, S-2} = {{v2, v3}, {v1, v3}}. Finally, let σS = { Γ-3, S-3} = {{{v2, v3}, {v1, v3}}, {v1, 
v2}}. Since σS is clearly binary, the function μ2 can be iteratively applied to it. Lemma 1d gives μ2(

S
pσ ) = μ( { , }j jS

p − −Γ
) = μ3(pS). 

Now consider the case when S contains n members. The society σS is recursively 
constructed as follows: a) if S = {vi, vj}, then σS = S; b) if S = {v1, v2, … vn}, then: 1) construct the 

n societies S-j = S – {vj}; 2) construct n societies 1−σ
S , 2−σ

S , … −σ nS  with the property that μn-1(

jS
p − ) = μ2(

jS
pσ −

) for each j; 3) construct a new society Γ-n = { 1−σ
S , 2−σ

S , … ( 1)− −σ nS }; 3) finally, 

construct the society σS = { n−Γ
σ , −σ nS }. Note that since S has n members, all S-k ’s and Γ-n have n 

-1 members. Clearly, each −σ kS  and n−Γ
σ , as well as σS are binary. (Observe also that the definition 

of σS also covers the case when n = 3.) 

By induction we have that for each society S-j (j = 1, 2, … n) there is some society  

with the property  that μn-1( jS
p − ) = μ2(

jS
pσ −

). I shall prove that μn(pS) = μ2(
S

pσ ) holds for all 

profiles of S.  

Case 1: μn(pS) = 1. By the lemma 1a18  all S-j’s are such that μn-1( jS
p − ) ≥ 0 and there is 

some j such that μn-1( jS
p − ) = 1. By induction, since S-j contains exactly n - 1 members, we have 

that μn-1( jS
p − ) = μ2(

jS
pσ −

). Moving to Γ-n = { , , … }, observe first that this society 

has n – 1 members and so μn-1( np −Γ
) = μ2(

n
pσ −Γ

). Second, for each j < n we have: μn-1( − jS
p ) = μ2(

− jS
pσ ). Now we apply to Γ-n the argument given above for the societies S-j. We have two subcases:  

i) μn-1( −nS
p ) = 0. Then we must have μn-1( jS

p − ) = 1 = μ2( ) for some j < n, while for 

the all the other k < n we have μn-1( − kS
p ) = μ2(

− kS
pσ ) ≥ 0, which entails that μ2(

n
pσ −Γ

) 

= 1 and thus μ2(
{ , }n

nS

p
σ

σ −Γ −

) = μ2(1,0) = 1 = μn(pS); 

 
18 Similarly, we can prove dual propositions, when value -1 replaces 1. This result is necessary in the proof of Case 2. 

−σ jS

1−σ
S 2−σ

S ( 1)− −σ nS

− jS
pσ
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ii) μn-1( −nS
p ) = 1. Then μ2(

n
pσ −Γ

) = a ≥ 0, which gives again μ2(a,1) = 1 = μn(pS). 

Case 2: μn(pS)  = -1. The proof is just like in case 1. 

Case 3: μn(pS) = 0. Let s be again the number of vj’s such that 
jvp = 1; m the number of vj’s 

such that 
jvp = -1; and z the number of vj’s such that 

jvp = 0. By the definition of μ we must have 

that m = s. Keeping in mind that μn-1( − jS
p ) = μ2(

−σ jS
p ) for all j, the value of μ2(

− jS
pσ ) is determined 

as follows: 

i) if
jvp =  0, then clearly at S-j we still have m = s, because 

jvp is a z, and so μn-1( − jS
p ) = μ2(

− jS
pσ ) = 0;  

ii) if
jvp = 1, then we have μn-1( − jS

p ) = μ2(
− jS

pσ ) = -1, because at S-j we have  m > s - 1.  

iii) if
jvp = -1, then analogously we get μn-1( − jS

p ) = μ2(
− jS

pσ ) = 1. 

So there are s societies S-j such that μn-1( − jS
p ) = -1 and m societies S-j such that μn-1( − jS

p ) 

= 1. Again, m = s. Further, the society Γ-n contains exactly n-1 members, and so by induction μn-1(

np −Γ
) = μ2(

n
pσ −Γ

). Moreover, the society σS = {
n

pσ −Γ
, −σ nS } contains exactly two members and 

therefore we can apply μ2 to it. There are three possibilities: 

i) μn-1( ) = 1. Then in Γ-n the number of S-j ’s such that μn-1( ) = -1 is larger than the 

number of S-j ’s such that μn-1( ) = 1, which entails that μn-1( np −Γ
) = -1 = μ2(

n
pσ −Γ

). 

Then μ2(
{ , }n

nS

p
σ

σ −Γ −

) = μ2(-1, 1) = 0 =μn(pS). 

ii) μn-1( ) = -1. This case is similar to (i).  

iii) μn-1( nS
p − ) = 0. Then in Γ-n the number of S-j ’s such that μn-1( ) = -1 is equal to the 

number of S-j ’s such that μn-1( ) = 1. Therefore μn-1( np −Γ
) = 0 = μ2(

n
pσ −Γ

) and so μ2(

{ , }n
nS

p
σ

σ −Γ −

) = μ2(0, 0) = 0 = μn(pS). ■ 

   
Proof of Theorem 8. Notice first that µ2 satisfies the four axioms. Conversely, we need to 

show that if a swf f satisfies these axioms, then it must be exactly µ2. If |S| = 1, i.e. it is a singleton 

jS
p − jS

p −

jS
p −

jS
p −

jS
p −

jS
p −
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{v1}, then by F we have f1(
1{ }vp ) = 

1v
p  = µ1(

1{ }vp ). So let |S| = 2, where S = {v1, v2}. We show that 

f2(
1 2{ , }v vp ) =  sgn(

1v
p  + 

2vp ) in all possible cases. We have:  

i) for profiles (1, 1) and (-1, -1) axiom BU in conjunction with F gives immediately 
f2(

1 2{ , }v vp ) = 1, respectively f2(
1 2{ , }v vp ) = -1;  

ii) for profiles (1, -1) and (-1, 1) axioms F and SET give f2(
1 2{ , }v vp ) = 0;  

iii) for profiles (-1, 0) and (0, -1) axioms F and IIS give f2(
1 2{ , }v vp ) = -1;  

iv) for profiles (1, 0) and (0, 1) axioms F and IIS give f2(
1 2{ , }v vp ) = 1; finally,  

v) for the profile (0, 0) axioms F and IIS give f2(
1 2{ , }v vp ) = 0. ■ 

 
6. Conclusions 

 
The main objective of this paper was to show that the study of swfs like the simple majority 

rule μ on domains including higher-order societies requires a careful examination of the properties 
they retain and also brings about new topics to be addressed. I argued that the reducibility of a swf 
to another is a powerful notion that gives us new insights about its properties and its relations with 
other swfs. I showed that when applied to higher-order domains μ fails to satisfy some of its 
standard properties (responsiveness, anonymity and capacity to work as an identifying criterion), 
while other properties of μ come to the fore (for example, the “reducibility to subsocieties”). The 
theorems I presented in sections 3 and 4 appeal to the notion of reducibility of one swf to another. 
The old results of Murakami, Fishburn and Fine focused on μ and succeeded to identify the class 
of swfs that can be reduced to μ (or: expressed in terms of it). An important side-result they proved 
was that the consensus rule κ cannot be reduced to μ. In this paper I proved that, conversely, κ is 
able to reduce μ; I also gave a characterization of the class of swfs reducible to κ. It is interesting 
to observe that the notion of reducibility makes sense not only in the relation between two different 
swfs, but also in the relation between a swf and its binary part, i.e. its applications to societies 
formed of only two members. Many swfs, μ included, can be reduced to their binary parts; others 
do not.  

An interesting result was reported in theorem 3b. There two “ideal” voters were introduced: 
they are characterized by the fact that they vote in the same way in all profiles (either 1 or -1). This 
procedure has a number of virtues worth highlighting. Consider the ideal voter 1+. It plays the 
same role as a swf t (top) which at all profiles pS of S gives the value 1: we have t(pS) = 1. Similarly, 
the ideal voter 1- plays the same role as a swf b (bottom) which gives b(pS) = -1 at all profiles pS. 
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So, theorem 3b can be rephrased as follows: the class of swfs reducible to the set formed of three 
swfs: the simple majority rule μ, the top function t and the bottom function b is exactly Φ{Mon}. A 
future interesting question would be to try to determine the classes of swfs reducible to other sets 
of swfs. 
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