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WORLD-INDEXED SENTENCES AND MODALITY 

ADRIAN MIROIU

Abstract
The paper investigates propositional modal languages which con­
tain indexes referring to possible worlds. A basic possible worlds 
logic is defined, in which we can mimic standard conditions in the 
usual modal semantics on the behavior of possible worlds. Connec­
tions between modality and world-indexed sentences are then stud­
ied. A semantics in terms of ‘possible worlds’ is defined, and com­
pleteness results relative to special classes of models called ‘mirror 
models’ are proved.

A world-indexed sentence has the form: ‘In world w, Quine is a distin­
guished philosopher’. Interesting cases involve iteration, for example: ‘In 
world w' it is the case that in world w Quine is a distinguished philosopher’. 
I will study in this paper the logic of these sentences. Intuitively, we may try 
to construct a language in which such sentences are allowed, and in which 
we can mimic standard conditions in the usual modal semantics on the be­
havior of possible worlds.

Section 1 is devoted to the investigation of this basic logic of the possi­
ble worlds. Section 2 introduces modality and investigates the connections 
between modal and world-indexed sentences. A semantics in terms of ‘pos­
sible worlds’ for this new logic is defined. In section 3 a new modal logic of 
possible worlds is introduced, and its completeness relative to special classes 
of models called ‘mirror models’ is proved. 1

1. Basic possible worlds logic

Let the language I  consists of a denumerable set S of propositional letters 
S, S', S" etc.; we also assume that it contains a set W of (possible) worlds 
terms w, w', w'' etc. The sentences of I  are the members of the smallest set 
that includes:
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(i) every propositional letter in S;
(ii) p  V whenever p  and ^  are in it;

(iii) —p and wp, whenever p  is in it, and w G W 1.

The following conditions on the behavior of the world-indexed sentences 
seem intuitively plausible:

1.1. —wp =  w—p
1.2. w(p V =  (wp V w^)
1.3. If h p, then h wp, for each w G W .

BW (basic possible worlds logic) has as axioms all tautologies, all expres­
sions of the form (1.1), (1.2) and is closed under the rules of detachment and 
(1.3). In BW the concept of reflection of a world by another is central, as 
we shall immediately see. Observe that (1.1)-(1.3) mimic in our language I  
standard conditions on the behavior of possible worlds: each world is consis­
tent (a sentence and its negation cannot be both true in any world); and every 
possible world is maximal (for every sentence, either it or it negation holds 
at it). Indeed, consistency is expressed by (1.1). Further, from the tautology

1.4.1. p  V —p

we get:

1.4.2. w(p V —p) (by 1.3)
1.4.3. wp V w—p (by 1.2)

and hence w is maximal. If the other logical connectives are defined as usual, 
the following results yield easily:

1.5.1. w(p A ^) =  (wp A w^)
1.5.2. w(p ^  ^) =  (wp ^  w^)
1.5.3. w(p =  ^) =  (wp =  w^)

Moving to semantics, a model of BW is a triple M =  (n, |=, F) where n  
is a collection of ‘possible worlds’ t , t ', t", etc., F  is a function ( W x n ) ^  
n , and relation =  is defined by: 1

1 The case is in fact more complicated. For each w € W , we should first define an 
operator (w) , with the meaning: in the world w ... Then, if p  is a sentence, (w)p will 
be a sentence too. However, since w and (w) are one-to-one correlated, I will ignore this 
complication.
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1.6.1. If p  G S, then t |= p , or t |= - p .
1.6.2. t =  - p  iff it is not the case that t =  p .
1.6.3. t =  p  V ^  iff t =  p  or t =  ^ .
1.6.4. t |=  wp iff F (w, t ) =  p .

A sentence p  is true at M, and I shall and write M =  p  for this, iff for every 
t G n , t =  p ; and it is BW-valid iff it is true at every model of BW. I 
shall write = BW p  in this case. (However, whenever there is no danger of 
confusion, I will omit the index.) The intuition behind the definition (1.6.4) 
is simple: each world in our W -collection is correlated, relative to each t , 
with a ‘possible world’ F ( t ,T ) =  t7 from our n-collection. Whenever a 
sentence p  is true at t7, the sentence wp, i.e. the sentence that p  is the 
case at w, is also true at t . As seen from t , the ‘possible world’ t 7 looks 
like w. Or, to put it in another way, t7 is reflected or mirrored in t like 
w. The concept of reflection of a world within another world is central in 
my approach to world-indexed sentences. I discussed it to a larger extent in 
Miroiu (1997, 1999).

Notice that the two collections W and n  of worlds must be kept distinct. 
We have yet no reason to take their members as been identical, or at least 
to assume that they are systematically correlated. The only thing we have 
by now is that at each ‘world’ t every world w reflects (via function F) a 
‘world’ t7. But we are not justified to claim that w is exactly t7.

Our language I  allows for iteration of the world operators; not only w p, 
but also ww7p and ww7w77p , etc. are sentences. We may state that p  is the 
case at w, but also that at w it is the case that at w7 it is the case that p , 
etc. Now one can easily check that in our semantical framework there is no 
logical connection between t =  ww7p  and t =  wp or t =  w7p .2 2

2 This runs counter the common view on indexed sentences. According to it, if t |= w p, 
then for any w' it also true that t =  ww' p. If p  is the case at w, then from the point of 
view of any other world w' this is an unalterable fact: that p  is the case at w is bound to be 
the case at every world w'. If Quine happens to be a distinguished philosopher in the actual 
world, then for any other world w Quine is bound to be actually a distinguished philosopher. 
A similar argument runs for so called world-indexed properties. As A. Plantinga put it, ‘we 
say that a property P  is world-indexed if there is a world W  and a property Q such that P  
is equivalent to the property of having Q in W  or to its complement —  the property of not 
having Q in W ... But an interesting peculiarity of world-indexed properties, as we have seen, 
is that nothing in any world has any such property accidentally.’ (Plantinga: 1970, pp. 490-2)

In our frame the common view on indexed sentences can be obtained as a special case. We 
may directly add to our logic BW a new axiom:

(1) w p  =  w 'w p
According to axiom (1) the iteration of world operators is superfluous. Semantically, 
it defines the following property of the function F :

(2) F (w, t ) =  F (w', F (w, t ))
Indeed, given (2) we have: t =  w p  iff F (w, t ) =  p  iff F (w', F (w, t )) =  p  iff 
F (w, t ) =  w 'p  iff t =  w w'p.
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Let us mention an important theorem of BW. Starting from (1.4.3) we get:

1.7.1. w '(wp V w—p )
1.7.2. w'wp V w'w—p

According to (1.7.2) at world w' either wp is the case, or w—p is the case: 
so, world w' mirrors w, i.e. it creates within itself a complete image of what 
is going on at w, in that for every p, at w' it is the case that either p  is the 
case at w, or —p is the case at w. (Again, there is no guarantee that the image 
of w in w' is adequate, i.e. that world w is mirrored in w' as it ‘really’ is.) 
We can express this idea more rigorously by means of the following lemma:

1.8. (The mirroring lemma) If £ is a BW-maximal consistent set of sen­
tences of I ,  then £ w = {p : wp £ £ }, with w £ W , is BW-maximal 
consistent.

Proof. £ w is BW-consistent. For suppose it is not. Then for some ^  
we have both ^  £ £ w and —̂  £ £ w. But, according to the definition of 
£ w, both w^ £ £ and w—̂  £ £ must hold. By (1.1), we get —w^ £ 
£ , in contradiction with our assumption that £  is BW-maximal consistent. 
Secondly, £ w is BW-maximal. Suppose it is not so. Then for some ^  neither 
^  £ £ w nor —̂  £ £ w. But (1.4.3) is a theorem of BW, hence w^ V w—̂  £ 
£  ans so either w^ £ £ , or w—̂  £ £ . But in this case we have either 
^  £ £ w, or —̂  £ £ w — contradiction.

Now let £ be a BW-maximal consistent set of sentences of I .  Then £ 
must contain complete descriptions £ w of what happens at each world w. 
Moreover, (since it contains maximal sets like £ ww/) £ w must contain com­
plete descriptions of the way in which the world w mirrors what happens in 
any world w' . But, of course, we have yet no reason to suppose that what 
£ w claims that is going on at w' is identical with what £ w« claims that is 
going on at w', or with what is ‘really’ going on at world w', i.e. with the 
way £ w/ really is. More formally, from t =  ww'p we cannot infer anything 
about t =  w ''w 'p or t =  w'p. I will return to this issue in the next section. 
The present ends with an expected completeness result:

1.9. Few p  iff = bw p.

Proof. Sufficiency is immediate. To prove (1.1), let M = (n , = , F) be 
a model of BW, and let t £ n . Then: t =  —wp iff it is not the case that 
t =  wp, iff it is not the case that F (w, t ) =  p, iff F (w, t ) =  —p, iff
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t =  w - p . To prove (1.2), we have: t |= w (p  V ÿ ) iff F (w, t ) |=  p  V ÿ , iff 
F (w, t ) =  p  or F (w, t ) =  ÿ , iff t =  wp or t =  w ÿ, iff t =  w p V w ÿ . 
Further, suppose that (1.3) is not valid. Then t =  p  for all t , but t ' =  wp  
is not the case for some t '. Thus, it is not the case that F (w , t ' ) =  p . 
But F(w, t ' ) =  t", and so it is not the case that t" =  p  for some t" — 
contradiction.

To prove the necessity part of (1.9), suppose that p  is not BW-provable. 
Then there is some model M = (n , = , F ) such that for some t G n , t =  p 
is not the case. We will construct this model as follows: n  is the set of all 
BW-maximal consistent set of sentences of I . If £ is in n , put F(w,  £) = 
£ w. By (1.8), we know that £ w is also BW-maximal consistent, and hence 
£ w G n . Further, put £  =  p  iff p  G £ , whenever p  is a sentence S in S . 
To show that M is a model of BW we need to prove that for all p , £  =  p 
iff p  G £ . The only difficult case is when p  = w ÿ, for some ÿ . We have: 
£ =  wÿ iff F (w, £) =  £ w =  ÿ , iff ÿ  G £ w, iff wÿ G £ . Indeed, ÿ  G £ w 
entails wÿ G £ . For suppose it did not. Then, according to the definition of 
F  and the mirroring lemma, ÿ  were not in £ w. The converse results by an 
application of the definition of F. Finally, since p  is not a theorem of BW, 
{ -p}  is BW-consistent. It can then be extended to a BW-maximal consistent 
set £ , and - p  G £ , i.e. it is not the case that £  =  p . But £  is a member of 
the set n , which means that for some £ , p  is not true in £ , q.e.d.

2. Modality and possible worlds

Let us enrich our language with a new unary operator □ . We get thus a 
new language I '. Intuitively, □ p  means that p  is necessary. In the usual 
manner, starting from the necessity operator, the possibility operator 0 can 
be defined: 0 p  - □ - p . The aim of this section is to build a logic in
which modal sentences like □ p  and 0 p  mix with indexed sentences. I shall 
argue that modal operators are very useful in the attempt to study the logic of 
world-indexed sentences. This is the main reason why the logical properties 
of the modal operators will be investigated. To start with, let us add to BW 
two new axioms and two new rules3. We get a new logic BWM (basic modal 
possible worlds logic).

2.1. □ (p  ^  ^  (□ p  ^  □ ^
2.2. □ p  ^  wp
2.3. If h p , then h □ p  3

3 Almost all concepts and results used without proof in this paper can be found in Bull 
and Segerberg’s (2001) short introduction to modal logic. See also Blackburn, de Rijke, 
Venema (2001).
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2.4. If h wp for all w, then h Dp

(2.4) is a kind of w-rule. If the set W of names for possible worlds in 
our language 1 ' is infinite, then this rule is not necessarily effective, i.e. we 
cannot be sure that the collection of the theorems of our logic is recursively 
enumerable. The cardinality of the set W is also important in semantics. In 
the next section I shall prove that the completeness theorem for some modal 
logics of possible worlds can be established by use of models the cardinality 
of which is exactly W .

A model for BWM is again a structure M =  (n, |=, F). Here n  and F  are 
defined as above. The definition of =  must be extended to cases in which the 
operator □ is involved. Intuitively, a sentence p  is necessary at some world 
t if and only if at t the sentence that p  is the case at w is true for every world 
w:

1.6.5. t |= d p  iff t |= wp for every w.

The definition of a sentence d p ' being true at a world t g W appears to 
be different from the usual treatment of the operator □. First, a sentence like 
d p  is given a greater complexity as for example wp. Indeed, according to 
(1.6.5) the definition of t =  for a modal sentence presupposes the definition 
of t =  for world-indexed sentences. Secondly, the usual strategy of defining 
t =  d p  is to use an accessibility relation R(t t ) between possible worlds 
and have something like:

1.6.6. t =  d p  iff t =  p  for all t ' such that R(t t ).

Observe, however, that we can appeal to simple trick to get something very 
similar to (1.6.6). The following four expressions are equivalent (to shorten 
the argument, I will put them in a more formal dress):

(2.5.1) t =  d p  =  (Vw)t =  wp
(2.5.2) t =  d p  =  (Vw)f (w, t ) =  p
(2.5.3) t =  d p  =  ((Vt ')(Vw) (F (w, t ) =  t ' ^  t ' =  p)
(2.5.4) t =  d p  =  ((Vt ')((3 w)f (w, t ) =  t ' ^  t ' =  p )4

4 The following expression is valid in predicate logic: 

(V x)(A (x) ^  B)  =  ((3x )A (x ) ^  B)  

and hence 2.5.3 and 2.5.4 are equivalent.
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The antecedent of the right-hand expression in (2.5.4) is (3w)F (w, t ) =  t '. 
This stands for a relation, call it R, between t ' and t . Relation R (t 7, t ) 
holds iff t 7 is adequately reflected in t as some possible world w. Indeed, in 
this case a sentence p  is true in t 7 iff there is some w such that at t it is true 
that p  is the case at w. By (2.5.4) we can thus replace (1.6.5) by:

1.6.5.1. t =  Dp iff t =  p  for all t7 such that R(t7, t ) 
to provide a standard definition of the necessity operator □, and take (1.6.5) 
as a theorem. Then in the definition of t =  expression Dp is not given a 
greater complexity.

The appeal to the accessibility relation R on the set n  of worlds has an 
important consequence: we can define the logic of the operator □ by defin­
ing certain properties of R. In normal modal logic the accessibility relation 
R can be chosen freely, while in our case it is determined by the function 
F  (but F  can be chosen freely!). That is why the properties we may want 
to attach to R are ultimately related to properties of F. A first example is 
presented in the next theorem:

2.6. (Non-existence of a maximal element) (Vt )(3t 5 * 7)R(t , t 7).

Proof. By (2.2) we have: Dp — wp and also D—p — w—p, hence 
(□ p  A D—p) — (wp A w—p). Since, by (1.1) and (1.5.1) the consequent of 
this expression is a contradiction, we get:

2.7. Dp —— —D—p.

A standard result is that (2.7) is defined by R ’s property of having no 
maximal element5. The property of R expressed by 2.6 can be traced back to 
the properties of function F. Since R(t , t ') is short for (3w)F (w, t ) =  t7, 
that R has no maximal element comes to: (Vt )(3t7)(3w)F (w, t ) =  t7. But 
this is simply a consequence of our assumption that F  is a function.

5 A nice proof appeals to the substitution method (van Benthem: 2001). The second 
order translation of (2.7) is

(V P )(V r)((V r')(P (r, t ') — P ( r ' )) — (3 r ')(P (r , r ') A P (r ') ) )

Let us substitute R (*, r ') for P (*). We get:

(Vr )((Vt ') (R (t , t ') —— R (t , t ')) —► (3r ')(R (r , r ') A R ( r ,r ')))

i.e. exactly (2.6).
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This section ends with the completeness theorem for BWM:

2.8. h eWM p  iff |=BWM p .

To prove sufficiency we have to show that (2.1)-(2.4) are true in M. Let us 
take (2.3) as an example. Suppose that t =  p  holds for every t . Then, 
out of (1.3) we get t =  wp  for every w, and hence t =  Dp from (1.6.5). 
Suppose, conversely, that p  is not BWM-provable. Then we can show that 
there is a model M of BWM such that p  is not true in M. The procedure is 
analogous to the one used in the previous section to prove the completeness 
of BW. Thus, in M =  (n , = , F ), n  is the set of all BWM-maximal and con­
sistent sets £  of sentences of I '; F  is defined by: F(w,  £) =  £ w ; and put 
£  =  p  iff p  G £, for every p  G S . What we need is to examine sentences 
of the form D p . We have to prove that:

2.9.1. If £  =  D p, then Dp G £.
2.9.2. If Dp G £, then £  =  D p .

In the case of (2.9.1), observe that £  =  Dp iff £  =  wp for all w (by 1.6.5), 
iff wp G £  for every w (by induction); then Dp G £  (by rule (2.4)). As for 
(2.9.2), we have: from Dp G £  infer (by (2.2)) that wp G £  for every w; 
then £  =  wp for every w (by induction), whence £  =  D p, by definition 
(1.6.5).

But, if p  is not BWM-provable, then the set { -p }  is consistent and hence 
can be extended to a BWM-maximal and consistent set £  of sentences of I '; 
since - p  G £, it follows that £  |=  - p .

3. Mirror Models

As I mentioned above, our two sets of worlds — W and n  — must be kept 
distinct. The members of W were introduced syntactically, as elements of 
our formal language I .  The members of n , however, were introduced se­
mantically, as entities at which the sentences of our language are to be eval­
uated. Is there any connection between the two sets? In this section I will try 
to offer an answer to this question.

For each cardinal k, say that a modal logic L of possible worlds has the 
k property if the following holds: h_ p  iff p  is true in all its models M =  
(n, = , F ) for which | n  | =  k. Now let | W | =  w. It is interesting to inves­
tigate the cases in which L has the w property, i.e. when | n  | =  w =  | W | . 
In these cases a sentence p  is L-provable if it is true in all the models of L
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in which the members of the two sets of worlds are one-to-one correlated6. 
The significance of a logic L’s having the w property is that we can iden­
tify the two sets of worlds, and instead of working with both w and t we 
can simply appeal to, say, w-type worlds. For example, we can then write 
F(w,  w) =  w, meaning the each world adequately reflects itself. The logi­
cal and philosophical implications of this result are extensively discussed in 
my paper Miroiu (1999). Formally, the result requires the appeal to ‘mirror 
models’. In this paper I will start with the canonical model of a modal logic 
L of possible worlds and will define these structures by using the mirroring 
procedure described in lemma (1.8).

The modal logic of possible worlds I will study below, call it BWM1, re­
sults by adding to BWM two new axioms (3.1) and (3.2), and a new rule 
(3.3). The main result of this section is the proof that BWM1 has the w 
property.

3.1. Dp  ^  DDp
3.2. DDp ^  Dp
3.3. If b Dp , then b p .

Usual calculations show that these expressions define important properties 
of the relation R :

3.1.1. (transitivity) If R(t , t ')) and R(t ' , t "), then R(t , t ").
3.2.1. (density) If R(t , t '), then there is some t '' such that R(t , t '') and 

R (t " , t ').
3.3.1. (non-existence o f a minimal element) (Vt )(3t ')R (t ' , t ).

Consequently, at BWM1 relation R is transitive, dense, and (also given (2.6)) 
without both minimal and maximal elements. I shall first prove two lemmas. 
For every model M of BWM1 and every world in n , it holds that:

3.4. For every w and w' there is some w" such that for all p , t =  ww'p 
iff t =  w'' p .

Proof. By (3.1) relation R is transitive: if there is some wi such that 
F (wi , t ) =  t ' and there is some w2 such that F (w2, t ') =  t '', then there 
is some w3 such that F ( w3, t ) =  t ''. Suppose that for the worlds w1 and 
w2 we have F (w1, t ) =  t ' and F ( w2, t ') =  t ''. Then for every sentence p 
it holds that: t |= w1p  iff t ' |= p , and t ' |= w2p  iff t '' |= p . Given the

6 If w is finite, i.e. the number of world symbols in our language I ' is finite, then if a 
logic L has the w property, it must also have the finite model property.
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definition of |=  for sentences of the form w^, it also holds that: t |=  wrw2V 
iff t '' =  n. Since R is transitive, there should be some w3 such that for all 
p, t =  w3p iff t " =  p. Thus for all p, t =  w ^ 2p  iff t =  w3p. Or, to 
put it differently, for every w1 and w2 there is some w3 such that for all p,
t =  wiw2^  iff t =  w3p.

3.5. For every w there are w' and w'' such that for all p, t =  wp iff 
t =  w'w''^.

Proof. By (3.2) R is dense: if R(t , t ' ), then there is some t '' such that 
R(t , t ' ') and R(t ' ' , t ' ). Now, let w be a world in W and t a world in n . 
Then there is some t ' such that F (w, t ) =  t ', i.e. we have R(t , t ' ). Given 
the definition of =  we have that for all p, t =  wp iff t ' =  p. Since 
R is dense, there are some t '', w' and w'' such that F ( w' , t ) =  t " and 
F ( w' ' , t ' ') =  t '. Then for all p, t =  w 'p iff t '' =  p, and t '' =  w ''p iff 
t ' =  p. Hence for all p, t =  w 'w ''p iff t ' =  n. From this and: t =  wp iff 
t ' =  p, we get that: t =  w 'w ''p iff t =  wp.

Now let r  =  (n , = , F) be the canonical model of BWM1. r  is defined as 
follows: a) n  is the set of all BWM1-maximal consistent sets £ of sentences; 
b) if p  is a sentence in S, then £ |=  p  iff p  e  £ ; c) F (w, £) =  £ ' iff 
{p  : wp e  £ } = £ ' (the fact that £ ' is a BWM1-maximal consistent set of 
sentences is a consequence of the mirroring lemma (1.8)). Relation R can 
be defined in the usual way in terms of F, by: R (£ , £ ' ) iff (3w)(F (w, £) = 
£ ' ). To prove that r  is the canonical model of BWM1 it is necessary to 
show that p  is a theorem of BWM1 iff £  |=  p  for every £ in r . The most 
important step is to prove that £  |=  p  iff p  e  £  for all sentences. Obviously, 
the most difficult cases are p  = w^ and p  = D^. First, £  |=  w^ iff 
F (w, £) |= ^, iff ^  e  F (w, £) , iff (by the definition of F) w^ e  £ . 
Secondly, we have: £ |=  D ^ iff for every £ ', if R (£ , £ ' ), then £ ' |=  ^ ; iff 
for every £ ', if (3w)(F (w, £) =  £ ' ), then ^  e  £ '; iff for every £ ' and w, 
if F (w, £) =  £ ' ), then ^  e  £ '; iff for every w, w^ e  £ . Let us show that 
w^ e  £  for every w iff D ^ e  £ . The necessity part is directly entailed by 
(2.2); sufficiency yields by means of (2.4): for the set { - D ^, w^ : w e W } 
is inconsistent, and hence it is not included in £ ; hence we must have D^ e 
£ .

Now we arrive at a procedure to bring about a mirror model r s  starting 
with a set £  in r . For every £  in r , the structure r s  = (n ( £ ) , |= , F ) is 
generated in the following way: a) n(£)  is the set of all BWM1-maximal 
consistent sets A(w) =  {^  : w^ e  £ }; b) if p  is a sentence in £ , then 
A(w) |= p  iff p  e  A(w); c) if A e n(£)  and A ' e  n ( £ ) , then F (w, A) = 
A ' iff {p  : wp e  A } = A '.
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I shall first prove that each structure r s  is indeed a model of BWM1 at 
which the sets W and n(X) of ‘possible worlds’ are one-to-one correlated.

3.6. For every X in r ,  r s  =  (n(X), |=, F) is a model of BWM1 and 
| n ( X ) |  =  w.

Proof. Obviously, at r s  =  (n(X), |=, F) each world in W is uniquely 
correlated with the ‘world’ A(w) in n(X), and hence | n(X) |=  w.

First we need to show that function F  is defined for every w and X in r s . 
Suppose, indeed, that A ' =  F(w,  A), with A e  n(X). Then, for every 
^  e  A ' iff w^ e  A. But, according to the definition of A e  n(X), there 
is some w' such that w 'w^ e  X. But, since (3.1) is a theorem of BWM1, 
lemma (3.4) applies and hence there is some w'' in W such that for every 
^, w 'V e  X iff w 'w^ e  X. Thus, A ' =  : w "^ e  X} must also be a
member of the set n (X ).7

Secondly, r s  satisfies all the axioms and rules of BWM1. I will shortly 
discuss only the rule (3.3): if b Dp, then b p, because it causes some 
trouble. Suppose that for all sets A(w) in n(X) we have Dp e  A(w), but 
there is some A ''(w '') such that —p e  A "(w " ). Then for every w, X |= wp. 
We have thus X |= Dp, and by (3.2) we get X |= DDp. But this is equivalent 
with: for every w and w', X |= ww'p. Indeed, we have: X |= DDp iff for 
every w, X |= wDp; iff for every w and X', if F(w,  X) =  X', then X' |= Dp; 
iff for every w and X', if F(w,  X) =  X', then for every w', X' |= w'p; iff
for every w and w', F(w,  X) |= w 'p; iff for every w and w', X |= ww'p. 
On the other hand, from A ''(w '') |= —p we get: X |= w ''—p. Hence for 
every w and w', it is the case that X |= ww'p, but X |= w ''—p, for some 
w''. But no contradiction follows, because we cannot appeal to (3.5); for 
nothing guarantees that w'' itself is one of the for worlds for which it holds 
that: X |= w ''p iff X |= ww'p, for some pair w and w' of possible worlds.

It is possible, though, to appeal to the axiom (3.2). We already know that 
it is essential in the proof of lemma (3.5): for every w there are some w' and 
w'' such that for all p, X |= wp iff X |= w 'w ''p. What is its counterpart in 
our mirror model r s  generated by X? It comes to: for every A(w) there are

7 It is also necessary to prove that at M =  ( n , = , F ) F  is a function, i.e. that for every 
w in W  and A (w ') in n , F (w, A (w ')) picks up exactly one (maximally consistent) set of 
sentences. By the mirroring lemma, F (w, A (w ')) is a BWM1-maximal consistent set of 
sentences. But we must be sure that it is also a member of the set n , i.e. that it has the form 
A (w" ), for some w". Observe that F (w, A (w ')) is the set of all those sentences p  such that 
w p is in A (w '); thus, since M =  ( n , = , F ) is generated by the BWM1-maximal consistent 
set X, F(w,  A (w' )) is the set of all those sentences in X of the form w 'w p . By (3.3), there 
is some w"  such that F(w,  A (w ')) is the set of all those sentences p  with the property that 
w " p  is in X; by the definition of M, F(w,  A (w ')) is exactly A (w").
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some w' and A ' (w' ) such that A(w) |= p  iff A ' (w' ) =  w''p , which in turn 
is equivalent with: for every A(w) there are A ' (w' ) and w' and w'' such that 
F (w' ' , A ' (w' )) = A(w). At r s  this condition amounts to: for every A(w) 
there is some A ' (w' ) such that R(A ' (w' ) , A(w)). But as we already saw, 
the condition that there is no minimal element is expressed by (3.3). Hence 
this rule holds at our mirror model.

In order to prove that BWM1 has the w property, the crucial step is to show 
that:

3.7. {p } is BWM1-consistent iff there is some mirror model r ^ = (n ( S ) , 
= , F ) of BWM1 such that p  is true at some world in n (S ) .

Proof. If {p } is not BWM1-consistent, then there is no BWM1-maximal 
consistent set S of sets in the canonical model with p  e  S . But all the 
members of sets n(S) in every mirror model are BWM1-maximal consistent 
sets of sentences, and hence p  is not true in any world in n (S ) . Conversely, 
suppose that {p } is BWM1-consistent. Then, since r  is the canonical model 
of BWM1, there is some BWM1-maximal consistent set S of sentences, 
such that p  e  S . What we still need is to show that p  is true at some world 
in n (S ) . By (3.3), there is some S ' such that R (S ' , S) , i.e. for some w, 
F(w,  S ' ) =  S . Since p  e  S , we have wp e  S '. But then we can generate 
a mirror model , and of course S ' (w) =  S e  n ( S ' ). Consequently, p  is 
true at some n -world S in some mirror model.

Finally, we can state the theorem that a sentence is BWM1-provable if it 
is true in all the models in which the two sets n  and W of worlds are one- 
to-one correlated:

3.8. BWM1 has the w property.

Proof. Since r  is the canonical model of BWM1, a sentence p  is true at r  
iff {p } is consistent. Then by (3.7) p  is true at r  iff it is true in all the mirror 
models. Hence KbWM1 p  iff p  is true in all its models M = (n , = , F ) at 
which | n  | = w, which simply means that BWM1 has the w property.8

8 A slightly stronger logic BWM2 with the w property can be obtained by adding to 
BWM (3.1) and the T-axiom:

3.9. D p  ^  p

One can easily check that (3.9) has both (3.2) and (3.3) as consequences. A standard result 
in modal semantics is that this axiom defines the property of reflexivity of relation R . At the 
canonical model, it comes to: for every £ , R ( £ , £ ) .  And this is in turn equivalent with: there 
is some world w in W  such that for all p , it holds that: p  € £  iff w p € £ . Consequently, at 
the mirror model generated by £ , we have A (w ) =  £  € n .
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