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Sentences

A b s tr a c t . Some logical properties of modal languages in which actuality is expressible 
are investigated. It is argued that, if a sentence like ‘Actually, Quine is a distinguished 
philosopher’ is understood as a special case of world-indexed sentences (the index being 
the actual world), then actuality can be expressed only under strong modal assumptions. 
Some rival rigid and indexical approaches to actuality are discussed.
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In this paper I will investigate some logical properties of modal languages in 
which actuality is expressible. Usually, such languages result by extending 
a modal language with a new operator corresponding to the English adverb 
‘actually’. When applied to a sentence p  of the language, it produces a new 
one, actually p . For example, consider the sentence:

Quine is a distinguished philosopher. (1)

By applying to it the operator ‘actually’, we get another sentence:

Actually, Quine is a distinguished philosopher. (2)

The question is, what is the logic of this operator? One way or another, the 
standard move is that of correlating this operator with the ‘actual world’: 
roughly, the main, and normal, function of the actuality operator is thought 
of to help define the evaluation of the sentence in its scope with respect to 
the actual world. A good approximation of this idea is to take a sentence 
like (2) to mean that:

In the actual world, Quine is a distinguished philosopher. (3)

On this analogy, in its primary sense ‘actuality’ points to a possible world, 
the one which, among the other worlds, enjoys the property of being actual. 
However, (3) is just a special case of a world-indexed sentence like:

In world re, Quine is a distinguished philosopher. (4)

In general, if <p is a sentence, then that p  is the case at world re, i.e.: at re, 
p  (or wip for short) is a re-indexed sentence. So, sentences like: ‘In world 
re, Quine is a distinguished philosopher’, or even ‘In world re7, that Quine is
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a distinguished philosopher is the case in world w\ etc. are world-indexed. 
The claim I will try to substantiate in that an account of the logic of world- 
indexed sentences is highly significant for understanding the logical behavior 
of actual-world-indexed sentences like (3).

However, the investigation faces a serious problem. Consider, for in­
stance, the case of actual-world-indexed sentences like (3). On the one hand, 
when using the operator ‘in the actual world’ we consider what is going on 
in some world, the actual one. The sentence (3) is true if the state of facts 
that Quine is a distinguished philosopher obtains in the actual world. On 
the other hand, the language which contains world-indexed sentences like 
(3) and (4) is modal. A Kripke-type semantics for that language postulates 
a collection of entities usually called, again, ‘worlds’. Sentences (1) and (3) 
are then true or false at each of these worlds. Now, from among them we 
can select a world which is actual. The state of affairs that Quine is a dis­
tinguished philosopher may obtain in some of them, for instance in the one 
we take as actual, but fail to obtain in many other worlds. The problem is, 
how can we be sure that we speak of the same worlds in the two cases? How 
can we be sure that the world we take into consideration when using the 
operator ‘in the actual world’, and the world which, among the semantically 
postulated ones, is actual, are one and the same entity?

My view is that we have no guarantee that a systematic connection be­
tween the two collections of worlds exists from the outset. I hold, on the 
contrary, that it takes a lot of effort to define conditions to the effect that 
the worlds syntactically considered are among the worlds semantically pos­
tulated. Hence, it is only under such special conditions that a theory of 
actuality can be developed.

In the first three sections I develop a semantics for modal languages in 
which world-indexed sentences are allowed. In sections IV and V I  discuss the 
possibility of constructing a one-to-one correspondence between the worlds 
syntactically considered and the worlds semantically postulated. In the final 
section I return to actual-world-indexed sentences as a special case of world- 
indexed ones and discuss some approaches to the logic of actuality.

I

The modal language 3?  we will study1 includes a set S  of sentence letters, 
and the logical symbols A, V, —», -i, =  and □ . In addition, 3?  includes a 
set W  of world symbols w, w1, w”, etc. For each world symbol w  G W , let

1 In the first three sections I resume results presented in “Worlds Within Worlds” , in 
Nordic Journal of Philosophical Logic 1 (1997), 2, 26-40.
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(w) be the world-indexing operator: ‘in world w\ The idea is that if we 
prefix a sentence p  by the operator (w), we get another sentence, that <p 
is the case at w. The sentences of Jzf are the members of the smallest set 
containing: (i) every sentence letter; (ii) expressions if A ip, <p V ip, ip -A ip, 
p  =  ip, whenever it also contains ip and ip; (iii) expressions -i<p, O p  and 
(w )p , whenever it also contains ip. The only new element this definition 
brings is in point (iii) that, intuitively, world-indexing a sentence yields a 
sentence too. If ip is a sentence, and {to) is a world-indexing operator, then 
that ip is the case at w, i.e. (w)<p, is also a sentence.

The world-symbol w  and the world-indexing operator (w) are very dif­
ferent things. However, to simplify the notation, I will use the following 
convention: I will write tup instead of (w )p, keeping always in mind that in 
the sequence w p , w is just short for (iu). Hopefully, the context will prevent 
this ambiguity in our notation to cause misunderstandings.

To start with, it seems natural to advance the following minimal require­
ments on the behavior of w -indexed sentences, for each world w. The idea is 
to try to mimic in our language Jzf usual constraints from standard possible 
worlds semantics. For example, ~̂ p is the case at a world w  if and only if (p 
is not the case at w; p  V ip is the case at w if and only if p  is the case at w 
or ip is the case at w, etc.

1.1. b w -ip  =  ~*wp, for every w,

1.2. b w {p  Aip) =  (w p  A wip), for every w,

1.3. b w (p  V ip) =  (w p  V wip), for every w ,

1.4. b w (p  —> ip) =  (w p  —> wip), for every w,

1.5. b w (p  =  ip) =  (w p  =  wip), for every w.

We will also add to these the requirement that all provable sentences hold 
for each w:

1.6. If b p ,  then b w p, for every w.

For the beginning, let the underlying modal logic be the standard system K. 
The theorems of K are the tautologies, all expressions of the form:

1.7. □(<£> —> ip) —> (□</? —»• ^ip),

and all expressions deducible from them by detachment and necessitation: 
the rule that if b p , then b Op, For reasons that will become apparent in 
what follows, I will call LK (local K) the logic characterized by the above- 
mentioned conditions.

The following is an immediate theorem of LK:

1.8. b w p  V w~ip.
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For every sentence <p, either ip is the case at w, or -up is the case at w. 
Indeed, applying (1.6) to the tautology ip V -¡tp, we get w{<p V —w/?), and from 
(1.3) we get directly (1.8). Now, if we repeat the same steps starting with 
(1.8), we obtain:

1.9. h wfw p  V w'w-xp, for every ip.

Roughly, (1.9) expresses the fact that for each sentence p , the world w ' says 
that either ip is the case at w, or -up is the case at w, i.e. that world w' 
creates within itself an image of what is going on at It reflects or mirrors 
it?. The world w1 says how w is related to every sentence ip. Observe, further, 
that nothing guarantees that the way w  is mirrored in w’ is identical with 
the way w  “really” is. For it is possible that for some ip, w 'w p, but w-iip: 
world in’ claims that tp is the case at w, while in fact ip is not the case at w. 
But suppose that according to to', ip is the case at w  if and only if really ip 
is the case at w, for every <p\ or, to put it more formally: w ’wip =  imp, for 
every cp. Then the world wf reflects or mirrors w  adequately: w' says that 
something is going on at w  if and only if that something really is going on 
at w.

Let us rephrase all these in a more rigorous way. The most important 
concept we will use is that of a tc-localization of a set E  of sentences of 
If Z  is such a set, its ^-localization, L O C ^ Z ) for short, is defined by:

1.10. LO C^(i7) := {< /?: wtp £  Z } .

Thus, L O C ^ Z ) is the set of all those sentences of which, at Z , are the 
case at w. Given (1.9), our expectation is that if E  is LK-consistent and 
maximal, then LO C ^(Z ) will also be LK-consistent and maximal. The proof 
that this is indeed so is fundamental for all results from below.

1.11. (T he LOCAL m axim ality  lem ma) If E  is a LK-consistent and max­
imal set of sentences of JE, then so are the ^-localizations of E .

P r o o f . First, LOCw(Z ) is LK-consistent. For if it were inconsistent, then 
for some ip we would have both ip £  LO C ^fZ) and ->ip £  LO C ^fZ). But, 
according to definition (1.10), we would have both wip £  E  and w~<ip £  E . 
By (1.1), we would also have ~iwip £  Z , and this would contradict the 
supposition that E  is LK-consistent. Second, LO C ^fZ) is maximal. If it 
were not so, then for some ip, neither ip £  LO C ^(Z ) nor -up £  LO C^fZ) 
would obtain. However, since (1.8) is a LK-theorem, imp V w-np £  Z  and 
hence either imp £  Z  or w~>ip £  Z . But then, by definition (1.10), either 
ip £  LO C ^fZ) or -up £ LOCu,(Z), which contradicts the supposition on 
LOC W{E ). u
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Think, e.g., of £  as maximally describing the way facts “really” are. 
Then, for each w , the w -localizat ion of £  is the way w  says (at £ )  that facts 
are. Note that, although it is possible that for some w, the w- localizat ion 
LOCw(i7) of £  be exactly £ ,  at LK we cannot prove that this is always 
the case, i.e., that (at £ )  some world is such that it describes facts as they 
“really” are. Now, let the u/-localization of LO C ^fL1) be exactly LOCu,/ 
for some world w':

1. 12. LOCw>(LOCw(£))  =  LOCw'(£)

Obviously, LOCw/(LOCw(I7)) is (at £ )  the reflection of world w' by w. 
Indeed, according to definition (1.10), p  £  LOClt,/(LOCw(^7)) iff w 'p £  
LOCw(i7) iff w w ’p  £  £ ,  for every p ;  on the other hand, p  £  LO C ^ (S )  iff 
w'<p £  £ .  Then, (1.12) is equivalent to: ww'<p =  w 'p) £  £ ,  for all p , i.e. (at 
£ )  world w  adequately reflects w'.

II

In this section I will present a possible worlds semantics for LK. A model for 
jSf is a structure £  =  (K , R , F, 13), where K  is a set of indices, R  is a binary 
relation on K ,  F is a function from W  x K  to K ,  and U is a function which 
assigns a truth-value to each sentence, relative to each element k  of K .  The 
definition of U is the standard one, surely with a new case for sentences of 
the form w p, with w in W :

2.1. D efin itio n  of 13.

(i) if ip is a sentence letter, then U(y>, k) =  1 or U(y>, k ) =  0;

(ii) if ip is —1-0, then 15(^j, k) =  1 iff 13 (ip, k) — 0;

(iii) if p  is ip V £, then 15 (y>, k) =  1 iff 13(ip, k) ~  1 or I5(£, k) ~  1;

(iv) if <p is ip A £, then I3(p, k) =  1 iff 13(ip, k ) =  U (£, k ) — 1;

(v) if <p is ip -A £, then 15 (<p, k) — 1 iff 13(ip, k) =  0 or 0 (£ , A:)) =  1;

(vi) if (p is ip =  £, then 0(c/?, k) — 1 iff 13(ip, k ) =  15(£, A;));

(vii) if p  is □ ip, then I3(p, jfc) =  1 iff U(ip, k') =  1 for all k f such that R ( k , A:7);

(viii) if p  is imp, then U(<£>, A:) =  1 iff 13(ip, F(u>, A:)) =  1.

Models for jSf differ from usual models in possible worlds semantics in that 
they contain function F. The idea is to let the worlds we use in mimic 
the indices in K : whenever at k  it is true that p  is the case at w, then 
at the element k' of K  corresponding by F to w (with respect to k) the 
sentence p  must be true. It follows that w mirrors or reflects in k  the
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element k f =  F(ia, k) in K ;  k' is reflected in k  as w. In general, F(uj, k) varies 
with k : in different k's an element k' is not reflected as some fixed world w. 
Hence, in different k's the collection of sentences <p such that <p is the case 
at the world w do not necessarily coincide.

I will say that a sentence ip is true in a model <£ — {K , R , F, 13), and write 
£  1= ip for this, if 7S(y?, k) =  1 for all k  in if ; and I will say that a sentence cp is 
LK-valid, and write !=lk in this case, if it is true in all models. (Whenever 
there is no danger of confusion, I will omit subscripts.)

A most important thing to emphasize is that usually the indices in K  are 
called ‘worlds’; but of course they are different from the old worlds w, w', 
wft, etc. we appealed to. Although the objective of this paper is to closely 
connect “worlds” like w, w 1, wrt, etc. and “worlds” like k, k 1, k ” , etc., at 
the present stage of investigation we have to carefully distinguish them. I 
will call “w orlds” the elements of if , while the members of W  will still be 
referred to as “worlds”.

Now we can state the main result of this section:

2.2. T h eo rem . hLK y? iff I=lk

PROOF. First, sufficiency comes as a straight consequence of the following 
results:

2.3.1. if y? is a tautology, then 1= ip,

2.3.2. b n(y? —̂ ip) —̂ (Dy? —y Oip),

2.3.3. if b tp, then t= Cly>,

2.3.4. b -iw(p =  w~>ip,

2.3.5. 1= w(cp Aip) ~  w(p A wip,

2.3.6. b w(ip V ip) =  w<p V wip,

2.3.7. b w(ip —y ip) =  wip —y wip,

2.3.8. 1= w{ip =  ip) =  (wip =  wip),

2.3.9. 1= wip V w-np,

2.3.10. b —>(wip A w —up),

2.3.11. if b ip, then b w<p for each ip.

For example, to prove (2.3.4), let C be a model and let A: be a w o rld . Then: 
V(->wip, k) =  1 iff U(wip, k) =  0, iff ?J(y?, F(u>, k)) =  0 iff 0(->y>, F(m, k)) ~  1 
iff U(w~>ip,k) =  1. To prove (2.3.6), observe that U(w((p V ip ),k ) =  1 iff 
U{<pVip, F(u>, k)) =  1 iff£3(y?,F(u?, fe)) =  1 or 13(ip,T(w, k))  =  1 iff I3(wip, k) =  
1 or U (w ip,k) =  1 iff U(wip V w ip,k) — 1. To prove (2.3.11), suppose that
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U ((p,k) =  1 for all k, but U(w(p1k') =  0 for some Next, U(wip, k !) — 0 
iff U(<p, F(tn, k')) =  0. But, since F is a function, F{w ,k l) is a WORLD of 
which we supposed that 25(<p, k") — 1.

To prove the necessity part of Theorem 2.2, let us suppose that some <p 
is not LK-provable (i.e., Klk P does not hold). We will show that there is 
some model C such that £  h does not hold. This is the case if for some 
WORLD k , U ((pjk) — 0. Now, if <p is not LK-provable, then the set {-i<p} 
is LK-consistent. Hence it can be extended to a LK-maximal consistent 
set 27. The model C is defined as follows: first, K  is the set of all LK- 
maximal consistent sets. Obviously, E  G K .  Second, 22(27', 27") holds iff the 
set of all sentences <p such that □ <p is in E ' is included in E ”. Third, put 
F(uj, E r) =  LOCw(X,/). By the local maximality lemma, LOC1L,(i7') is in K .  
Finally, let U (p, E ') =  1 iff tp G 27' whenever <p is a sentence letter. The 
proof consists in showing that for every sentence <p, <p G 27' iff 0(<p, E !) ~  1. 
The only difficult cases are for ip =  wifi and <p ~  Dip:

(i) ip has the form wip. Then: l5 (w ip ,E f) =  1 iff I3(ifi, F(io, 27') =  1 iff 
ip G F(^, 27') iff wifi G 27'. First, ip G Y(ip, E ‘) entails wifi G E '. Suppose 
that wifi does not belong to E f. According to the definition of F(u>, E !) and 
the local maximality lemma, ip does not belong to Ffu ;,^1'). The converse 
results by a simple application of the definition of F.

(ii) <p has the form Oip. Then: U(Oip: E f) — 1 iff for each 27", if 
22(27', 27"), then I5{ifi, 27") =  1; iff for each 27", if 22(27', 27"), then ifi G 27"; iff 
Dip g  27'. The difficult step is to show that if 22(27', 27") entails ip G 27", for 
each 27", then Dip G 27'. We will show that if Dip is not in 27', then there is 
some LK-maximal consistent set 27" such that 22(27', 27") and ip is not in 27". 
The set T  =  { £ : □ £  G 27'} U { —i^} is LK-consistent. It can then be extended 
to a LK-consistent maximal set T '. One can easily see that for all £ such 
that □£ G 27', £ G 2-1', and hence 22(27',2V). But, since 21' contains -up and 
is consistent, it is not the case that ip G T'-contradict ion. To complete the 
proof of Theorem 2.2, it is sufficient to show that cp is not true in £. Indeed, 
since 27 is in K , and -up G 27, we have U (-■</?, 27) =  1, hence ?3(^, 27) =  0. ■

The following observation is important to keep in mind. Let the WORLD 

&' be such that there is some w  of which it holds that F(ie, k) ~  k f . Then 
I5(w(p, k) =  U(<p,k'), for every sentence cp. To put it in other words, <p is 
true at k ( iff it is true at k  that <p holds at w. But in this case the WORLD k  
provides a reflection of k f in it, and specifically it reflects the WORLD k' as 
the world w. As it looks from k, the world w  is an exact copy of k ’ . The case 
is in fact more general, since k  creates within itself an image of every WORLD 

k f which is F-connected to k via some world w. Here we find a first sense 
in which it is possible to say that the semantics developed in this section is
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“local” : each element of K  (a w o r l d ) simulate other w o r l d s  b y  means of 
worlds. However, this does not entail that WORLD k  creates inside it a full, 
and exact, image of all the WORLDS in K .

The question is, how would it be possible to create inside a WORLD such 
an image? The next three sections of this paper focus on developing a 
strategy to provide such an answer. In the next one I will show how it is 
possible to simulate the alternativeness relation R  by means of a surrogate 
relation, defined in terms of the function F. In sections IV and V I will 
investigate the possibility of creating, in each w o r l d , an adequate image of 
all the other WORLDS, as well as of the alternativeness relation between them. 
The burden of the argument will consist in proving completeness results by 
taking into account only those models in which a one-to-one correspondence 
between WORLDS and worlds holds. Hence, in those models, each WORLD 

will create, by means of its worlds, a full, and adequate, image of the entire 
model. As a result, it will then be possible to view our semantics as “local” 
in second, and stronger sense, that each w o r l d  (in a model) succeeds in 
providing all information all WORLDS in the model carry.

Ill

If we think of worlds as entities which mimic WORLDS, it is natural to consider 
the relation between them and modalities. According to the clause (2.1vii), 
a sentence ip is necessary at some WORLD k  iff it is true at all WORLDS 

alternative to k. But now the founding idea of possible worlds semantics 
enters the picture. The question is, would it be possible to define conditions 
for a sentence’s <p being necessary at k  in terms of worlds, not of w o r l d s ? 

Specifically, the following condition immediately comes into one’s mind:

3.1. £3 (□?/>, k) =  1 iff for all worlds w, U(wip, k) =  1.

The w o r l d  k  renders ip necessary iff at fc, according to all worlds w, it is 
the case that ip.

In this section we will define conditions to the effect that (3.1) holds. To 
begin with, observe that the claim that for all worlds w , U(imp, k) =  1 is 
equivalent to each of the following expressions:

3.2a. Vu? U{ip: F(w, k)) =  1,

3.2b. VioVfc'(F(io, k) =  k f -A U(iP, k') =  1),

3.2c. W ( 3 w  F(to, k) =  k * ->  U{ip, k ’) =  1).

Looking at the antecedent 3w  F (w ,k ) =  k ! of (3.2c), it is crucial to note 
that to assert 3w  F(io, k) =  k ' is to assert that some binary relation holds
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between k  and k'. Call R this relation. Intuitively, k  and k ! (in this order) 
are related by R iff k 1 is (adequately) reflected in k  as some world. Then 
(3.2c) can be rephrased as:

3.2d. W( R( k ,  k f) kf) =  1).

By (3.2d), a sentence ip is necessary at a WORLD k  iff it is true in every 
w orld  which is (adequately) reflected in k  as some world.

Now, if we write (2.1vii) as: Vfc'(i2(fc, k l) -A k?) =  1), the analogy 
between it and (3.2d) is striking. The only difference is that while the 
antecedent of (2.1vii) appeals to the alternativeness relation R , in (3.2d) we 
find, instead, the reflection relation R. But then our objective of finding 
conditions which render a sentence necessary at some WORLD iff it meets 
the condition expressed in the right side of (3.1) reduces to finding, under 
what conditions R (k , k f) holds iff R(A:, k') holds. A precise answer is given by 
Theorem 3.4 below. First, let LT (local T) be the logic resulting by adding 
to LK:

3.3.1. All sentences of the form H p —» imp, for all ip.

3.3.2. The rule: if f~xT w p  for each to , then Hx t  n<p.

Condition (3.3.1) is a local counterpart of the standard T-principle: □</? “A iP- 
The latter states that if a sentence ip is necessary, then p  is true (in the 
reference w orld); with (3.3.1), we have: if a sentence p  is necessary, then 
p  holds at every world w. Condition (3.3.2) is the local counterpart of the 
necessitation rule. According to it, if w p  is LT-provable for each world re, 
then U p  must be LT-provable. The intuition behind (3.3.1) and (3.3.2) is 
that worlds are similar to WORLDS, and by imposing the two conditions an 
attempt is made to render, with respect to worlds, standard conditions on 
WORLDS. Then:

3.4. T h eo rem . A sentence p  is LT-deducible iff p  is true in all models £  in 
which relations R  and R hold for exactly the same arguments.

P r o o f . To prove the theorem, I will use the substitution method.2 Starting 
with condition (3.3.1), we will show that it defines:

3.3.1'. VtuV/c R (k ,V (w ,k )) .

Indeed, (3.3.1) can be translated into the following second order-predicate 
logic expression:

3.3.1a. \ /P \ /kV w {W (R (k,k') P(fc')) -> F(F(™ , k ))).

2 See J . van Benthem, “Correspondence Theory” , in D. Gabbay, F . Guenthner (eds.), 
Handbook of Philosophical Logic, vol. II, D. Reidel, Dordrecht, 1984, pp. 167-247.
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By substituting R (k ,  *) =  * for P (* ) , we get:

3.3.1b. V kV w (W (R (k ,k ')  R (k ,k ') )  ^  R ( k J ( w tk ))).

(3.3.1') results immediately once we observe that the antecedent of (3.3.1b) is 
an instance of a tautology. Now, by usual calculations, (3.3.1') is equivalent 
to

3.3.1c. V w V kW (?(w , k) =  k f R (k , k !)) 

and further

3.3 .Id. V k W (3 w  F{w ,k ) =  k f -> R ( k ,k ’)),

i.e. R C R . We got thus half of Theorem 3.4. The other half comes with 
some transformations on the translation of (3.3.2). Indeed, we have:

3.3.2a. VP(VwVA;P(F(u;,AO) ->■ V k W (R (k , k') -y P { k ’))).

Let us substitute 3w f T(wr, k ) =  * for P (* ) :

3.3.2b. VioVA0u/F(u/,A;) =  F(ttf, k) -»■ \ /k W (R (k ,k t) ^  3w f T(w ',k) =  k'). 

Since the antecedent of (3.3.2b) is always true, we get:

3.3.2c. Vk'ik>( R ( k ,k l) —> 3wF F(u>', k) =  fc'),

and this states that R  C R. ■

At LT it is then possible to get U<p at a WORLD k  iff 0(<p, k') =  1 for 
all k f such that R(fc, k1). Now, this retains the standard way of defining the 
truth-value of necessary sentences at a world, except that R replaces the 
more usual alternativeness relation R . Further, observe that the definition 
of R is only in terms of F, and does not depend upon the component R  of 
the model. This suggests the possibility of letting a model C be simply a 
structure (K ,T ,15) and use (3.2d) to modify Definition 2.1 (vii) as:

2.1vii'. If ip is nip, then U ((p,k) =  1 iff U((p, k') for all k ’ such that R(k, k').

Keeping in mind expressions (3.1) and (3.2), this manoeuver entails that 
U(n<£>, k) =  1 is definable as: for all w, I3(w(p,k) — 1. Thus, at k  a sentence 
<p is necessary iff for each w  the sentence ip is the case at w. Notice that if a 
modal logic contains LT, its semantics might be correspondingly simplified 
to using only models like C =  {.K , F, U).

I will end this section by noting an important theorem of LT:

3-5. I"Xt Oi f —> — —iif .
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The proof appeals to (3.3.1). Prom D p  —y w p  and D—tp —y w~>p we get: 
(□ 99 A □-><£) —y (w pA  w-'ff)-, hence (□<£> A □-»£>) —>■ (w p  A ~^wp) , which gives: 
—.(□</?A□ —ly?); and this is in turn equivalent to (3.5). Remark: the semantical 
condition corresponding to (3.5) is: \/k3k' R(&, k'), i.e. R is serial3.

IV

Let LM be the modal logic obtained by adding to LT the axiom:

4.1.

Semantically, it is known that condition (4.1) requires that relation R be 
transitive.

4.2. L e m m a . Let £  =  (K , F,£5) be a LM-model. Then for each w and wn 
there is some wf such that for all p , U(wwrtp  =  w fp : k) =  1.

P r o o f . We know that (4.1) expresses the fact that R is transitive: if 
3w\ F(uq,&) =  k r and 3w2 T{w2 -,k') =  fc", then 3w$ T (w z,k) =  k ”. Suppose 
that for some w\ and W2 we have: F(u;i,fc) =  k' and Fftt^fc') =  k " . Then 
for all p  we have U(iui<p,&) =  l } ( p , k f), and U(w2 P ,k t) =  U (p ,k" ).  By the 
definition of ?J for sentences of the form ot/j, we also have: U(wiW 2 p 7 k) =  
I5 (p ,k" ). Since R is transitive, we get that there is some such that for 
all p 7 Z5(wsp, k) =  U (p ,k if). Hence for all p , U(wiW 2 <p->k) ~  I5(w $p7k); or, 
to put it differently, for each w\ and W2 there is some such that for all p , 
U(wiW2<p =  w zip,k) =  1. ■

Let us for each world w define a set [to]*, by: w ! £  [tu]*, iff U (w p =  
w'p, k ) =  1 for each sentence <p. The intuitive idea is that at the w o r l d  k  
in £  the worlds w and w1 are indistinguishable. Further, consider a function 
¡i which picks from each set [su]*. an element of it: ¡j,([w]k) G [w]k . Now, start­
ing from an element k £ K ,  we will build a new model £ ki{J, =  {K&, FfcjM, 
of LM with the property that in it WORLDS and worlds are one-to-one corre­
lated. I will say that £ k^  is a mirror model of LM. The components of £ k>fi 
are defined as follows:

(i) K k =  { k w : w £  W };
(ii) kw) =  1 at £ kffi iff I3(wp, k) =  1 at £.

The set of the w o r l d s  of £ ktfi is defined such that its elements are one-to- 
one correlated with the worlds in W . A simple application of the definition 
of U and of the local maximality lemma implies that the set of sentences

3 This conclusion is of course an immediate consequence of the fact that F is a function.
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ip such that I3fa^((p, k w) =  1 is maximally consistent, and hence that 13 
satisfies conditions (i)-(vi) of Definition 2.1. To show that it also satisfies 
conditions (vii) and (viii), it is necessary to define the function F ^ .  We will 
proceed as follows:

(iii) kw) =  kw> iff there is some wm such that: 1) I3(ww"p ~
w nip , k) =  1 holds at £  for all cp; and: 2) fi([w tu]) =  w ' .

That is indeed a function follows from Lemma 4.2, which guarantees 
that wni, and hence [w'l!] exists, and from the definition of p, which renders 
the unicity of w f. Now, observe that U^fw/'ip, =  1 iff I3(wwlfp , k) =  1. 
By Lemma 4.2 and the definition of p, we have I5(wfp ,k )  =  1, and hence 

kwi) =  1, which proves condition (viii) of Definition 2.1. Condition 
(vii') follows easily once we keep in mind that at £  function 13 was already 
defined for sentences <p of the form tm/?. Finally, we can define as usual the 
relation R ^  by: R k,ii{kw ,kw>) iff there is some w!f such that kw) =
ku/ . 4 This completes the proof that is a model of LM.

Observe, however, that it is possible that a sentence p  be true at a 
model £  =  ( i f ,  F, 13) only at WORLDS k  such that there is not a WORLD k ’ so 
that R(&',&), and false otherwise. Call <p £-basic if this is the case. Then, 
obviously, there is no mirror model £&ijti of LM such that cp is true at it. Also, 
call a sentence <p LM-basic if for every model £  of LM, <p is £-basic. Then:

4.3. T h eo r em . Let <p is not LM-basic. Then {<p} is LM-consistent iff there 
is some mirror model =  (if*, FfciM, Wkifi) of LM such that Ofc (̂<p, kw) — 1 
for some kw G K^.

P r o o f . If { ^ }  is LM-consistent and ip is not LM-basic, then there is some 
LM-model £  =  (if, F, U) such that U(cp, k) =  1 for some k  G i f  of which it 
holds that R(&', k) for some k'. Then there is a world w such that I3 {w p ,k r) =  
1, and thus at £ * / we have Ufc)jU(ip, kw) =  1. Next, by the completeness 
theorem for LM, if there is some model £  =  (if, F, U) such that U(<p, k) =  1 
for some k  G i f ,  then {ip} is LM-consistent. Suppose, conversely, that at 
£ k iti =  (iffc,Fk,ti,Wk,fi) we have U k^ ip , kw) =  1 for some kw. Then at £  it 
holds that I3(wp, k) — 1. But then, if T (w ,k) =  k l, then I3 (p ,k >) — 1, and 
R(fc, &'), i.e. {ip} is LM-consistent and p  is not LM-basic. ■

V

Unfortunately, Theorem 4.3 is not very rewarding. First, the result is stated 
with respect to a special class of sentences. But, second, at LM we cannot

4 Exercise: show that Rfc)M is transitive and serial.
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prove that basic sentences really exist or not. There are of course various 
ways to deal with these points. In this section I will investigate the al­
ternative of rejecting the possibility that a WORLD is such that it has no 
R-antecedent.5 To do this, consider the following two conditions:

5.1. h □<£> -A ip,
5.2. If b n<p then b <p.

Call LM1, respectively LM2, the two logics obtained by adding (5.1), re­
spectively (5.2), to LM. The reason why we define logics LM1 and LM2 is 
that under conditions (5.1) and (5.2) at each model no w orld  k  is such that 
there is no k ! so that R(fc/ , k) holds, and consequently no sentence is basic. 
To see this, we will start with (5.1). A standard result is that (5.1) defines 
the condition that relation R is reflexive. This entails that for each WORLD k  
there is some k r, namely k  itself, such that R(&',&). Condition (5.2) defines 
exactly the condition that for each k  there is some k' such that R(&', k). This 
can be seen by substituting in the second-order translation of (5.2):

5.3.1. V P ((V M " (R (^ ^ ') -4 P (f c " ) )  -A V k P {k ) )

expression P(+) by 3k' R(&',*). We get:

5.3.1'. (VfcVA;"(R(fc, fc") -a 3 y  R(fc', k”)) -a Vfc3fc' R(fc', k).

Since the antecedent of (5.3.1') is a logical truth, we immediately obtain: 

5.3.1". VJfc3ifc'R(fc',fc).

Hence at LM1 and LM2 if a sentence cp is consistent, then for no model 
£  it is the case that cp is C-basic. It is then easily provable a completeness 
theorem for LM1 which appeals only to mirror models:

5.4. THEOREM. The set {<p} is LM 1-consistent iff there is some mirror model 
£k,n =  (K k ,Ykitl,l5 k^) of LM1 such that Ukjfi(ip, kw) =  1 for some kw G K k .

As usual, let us say that ip is LMl-valid, and write Nlmi <P for this, if tp 
is true in all models of LM1. Further, let us say that <p is LM l-mirror valid

5 Another alternative would be to accept basic sentences, via e.g., provability logic. 
Although very tempting, I will not be concerned in this paper with it. (For provability 
logic and its connections with modal logic, see G. Boolos, The Logic of Provability, Cam­
bridge University Press, Cambridge, 1993; C. Smorynski, Self-Reference and Modal Logic, 
Springer Verlag, New York, Berlin, 1985, etc.) The alternative is not very easy, because 
of the incompatibility between (3.5) and Lob’s axiom:
(L) □ (□¡¿? ip) —y □<£.
Indeed, with condition (L) it is provable that (Oip —$■ =  -iCLL, and given (3.5),
we would also have I— ■□_!_. To work out this alternative would then require to relax the 
conditions on F, and specifically the condition that it be a function (see also footnote 3).
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(and write !=lm i(M) V f°r this) if <p is true in all mirror models of LM1. Now, 
a corollary of Theorem 5.4 is that:

5.5. hLMi ^  iff NLmi <-P-

Our logic LM1 has the property we looked for: the sentences provable in it 
are exactly those sentences true in the models in which worlds and WORLDS 
are one-to-one correlated.

However, with respect to LM2 we cannot prove an analogous result. 
The reason is that the rule (5.2) does not hold at mirror models of LM2. 
For suppose that for all kw £  K}-, y ^  (□</?, kw) =  1, but there is some 
kwn such that Ofc!̂ (“,¥J, kwn) =  1. Then for all w, U (w(p,k) =  1. Hence 
we have y  (□<£>,&) — 1, and by (4.1), y (d d ^ , k) =  1. We will show that 
this is equivalent to: for all w and wf, Z5{wwf<p,k) =  1. Indeed, we have: 
n(D D^, k) ~  1 iff for all w, y(uOy>, k) — 1; iff for all w  and k\ if F(tu, k) — k ' , 
then U (□<£>,k') — 1; iff for all w and fc', if F{w ,k )  =  then for all u/, 
U(w,<p^k') =  1; iff for all w and w !, y(u/<p,F(u;, fc)) ~  1; iff for all w and 
w ' , U (wwf(p,k) =  1. On the other hand, from kw») =  1 we get
U(wrf->(p, k) ~  1. Thus, it holds that for all w and u /, l${ww'ip,k) =  1, but 
yfw/'-icp, k)  =  1, for some w ". The argument is blocked, because we cannot 
use Lemma 4.2 to get a contradiction: we cannot be sure that w" itself is 
among the worlds such that y  (w/'<p, &) — 1 iff I3(wwlip, k) =  1, for some pair 
w  and w ! of worlds.

We can, though, proceed as follows: let LM3 the logic obtained by adding 
to LM the conditions:

5.2.1. If b Dip then h </?,
5.2.2. t n ip.

It is not difficult to prove that (5.2.2) defines condition:

5.2.2'. V&Vic3u/3u/'V<p y(im£> =  w w f<p, k )  =■ 1.

Indeed, it is known that (5.2.2) defines the density of relation R: if R(&,&'), 
then there is some k" such that R(&, k") and R(&",&'). Now, let w  be a 
world and k  a w o rld .6 Then there is some k ‘ such that F(iu ,k)  — k'. 
Obviously, this entails that R(fc, k 1). Given the definition of y , we have for all 
(p, y(u;<^, k) =  U ((p,k!). Since R is dense, there are some k " , w ' and w" such 
that F(w ',k ) =  k" and F {w \ k ”) =  k r. Then for all <p, U(wfip ,k) =  U(<p: k") 
and I3(wr,(p: k n) =  I3((p,k'). Hence for all U(w,w ,t(p^k) — U((p,k'). From 
this and U(w<p, k) ~  y(cp, ft'), we get: y(u!'u/'<p, k) =  U (w (p,k).

6 If we accept (5.2.2) and in the same time no world is reflexive, then the set W  must 
of course be infinite, if we want to get a mirror model of LM3.
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Now, using (5.2.2') we immediately see that rule (5.2) holds at mirror 
models. Then:

5.6. T h eo r em . The set {g?} is LM3-consistent iff there is some mirror model 
=  (K k,?k,ti, Uk,ti) of LM1 such that Uk^{<4>,kw) =  1 for some kw e  K k .

An easy corollary is that:

5.7. I- LM3 <p iff i=LM3 <£>■

In the remainder of this paper I will focus on mirror models, while situations 
in which usual models of the logics considered are appealed to will be ex­
plicitly mentioned. Therefore, for simplicity I will omit subscripts attached 
to functions F and U. It is also extremely important to note that at these 
mirror models we can always correlate worlds and WORLDS: a WORLD kw 
obviously corresponds to a world w ; and, conversely, a world w obviously 
corresponds to a WORLD kw. We can then simplify the notation and write, 
e.g., T(w,w') — w" instead of F¿^(nq fcw/) — kw>>, and U(w(p,w') — 1 instead 

of o k A W(p>k™') ^  l -
However, this notational convention leaves unanswered the question: 

How is a WORLD kw related to a world to? To sketch an answer, let £  
be some mirror model of LM1, and let w  be one of its WORLDS. Then we 
can prove the theorem:

5.8.1. T h e o r e m . There is some w' such that for all y>, U (wf(p,w) ~  1 iff 
U{ip,w) =  1.

PR O O F. We already saw that the axiom (5.1) of LM1 defines the reflexivity 
of the relation R. But R(tu, w) is equivalent to: for some w\ T(w’,w ) =  w. 
Then for an arbitrary (pt we have: 0(g?,te) =  1 iff ^((^,F(n;, , w )) =  1, iff 
75(wV, w) =  1. ■

Theorem 5.8.1 states that each WORLD w is reflected in itself as some 
world wr. But we can prove at LM1 something even stronger, that at w  each 
worlds reflects some WORLD of the model:

5.8.2. T h e o r e m . For each world w ” there is some w o r l d  w' such that for 
each sentence </?, 15((p,w') =  1 iff U(wir<p,w) =  1.

P r o o f . Keep in mind that we reason at mirror models. Theorem 5.8.2 holds 
iff at the original model we have: for all w  and w” there is some w' such that 
for every <p, U(wlip: k) =  1 iff I5{ww"ip,k) =  1, i.e. 15{wfip =  w w f>(p,k) =  1, 
which is obviously true under Lemma 4.2. ■
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But note, first, that by Theorem 5.8.1 at w  we have no reasons to suppose 
that the world which is a reflection of world  w at itself is exactly w. Second, 
although by Theorem 5.8.2 at w each world w" is a reflection of some WORLD 
w', we cannot hold, conversely, that each world  is reflected in w as some 
world. Third, we have no guarantee that WORLD w  reflects w orld  w! as w' 
really is. In the remainder of this section I will focus on the first of these 
questions.7

By Theorem 5.8.1 we are naturally tempted to take the world which 
reflects a WORLD w at itself be exactly w. To do this, we have to move from: 
there is some wl such that F(u/, w ) =  w to:

5.9. F(uj, uj) = u>,

i.e. WORLD w self-mirrors8. However, what is the syntactical counterpart of 
condition (5.9)? To detect it, I will use a back-and-forth argument. Roughly, 
it runs as follows: start with a semantical condition at a mirror model. Then 
move to the original model, and see if it defines there a syntactical condition. 
Since the mirror model, the original model and the generating WORLD were 
arbitrarily chosen, conclude that the newly found condition holds for every 
model, and hence, by completeness, that it is a theorem. Finally, move 
forth, by the completeness theorem for mirror models, to the truth of that 
condition in each mirror model. In our case, if (5.9) holds, then for each 
sentence <p we must have I5{wip =  (p, w) =  1. At the original model and 
WORLD, we have: I5(ww<p =  w<.p,k) =  1. So we will put

5.10. b wwtp =  w<p

which must then be true at every mirror model. I will call LM4 the logic 
resulting by adding axiom (5.10) to LM1.

VI

In the previous sections I gave an account of how to answer the main problem 
of a theory of world-indexed sentences: How is it possible to correlate worlds 
syntactically  considered and  WORLDS sem antically  postulated?  On this ba-

7 The answer to the other two questions is still open. For example, it is possbile to argue 
as follows: the condition that each world xd' is reflected as some world w" is equivalent 
with: VioVw'Bw” T(w!!,w ) =  w1, and further with: VtuV«/ R(w,w'). Now, to assure that 
it holds, it seems that, because of (4.1) and (5.1), we only need to add to LM4 the axiom: 
5*11. ip —y
and get in this way a new logic LM5. Obviously, its underlying modal logic is the standard 
S5. However, I am not sure that, when attempting to prove completeness, we face no 
problem due to the interference between this condition and F s  being a function.

8 In “Worlds Within Worlds” , p. 28, I called w self-conscious.
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sis, I will come back and concentrate on the favorite case of world-indexed 
sentences: those prefixed by the operator ‘in the actual world’. To be sound, 
our investigation should provide an account of how “actual world” denotes 
a certain WORLD, the one that is actual (whatever this might mean). I will 
present two approaches to this issue. The former is syntactically motivated. 
The idea is to select from the members of the set W  of our language a 
special operator a, taken to mean: ‘in the actual world’, and study it in 
analogy with the other world-indexing operators. So, suppose that we are 
at LM1 and that a  is one of the elements of W . Then, by appealing to the 
axioms of this logic, we have, e.g.:

6. 1.1. a-icp =

6.1.2. a((p Aip) =  a<p A a  ip,

6.1.3. if h ip, then b~ a ip,

6.1.4. Dip —> a  ip,

etc. Are there other properties of the a  operator? Well, it depends upon the 
view on actuality one accepts. Consider, indeed, the following two proposi­
tions:

6.2. wcap =  a  ip,

6.3. woap =  Wip.

W ith the former proposition, world-indexing is parasitic upon a-indexing: it 
brings nothing new about the status of a a-indexed sentence. Contrariwise, 
with the latter proposition a-indexing is superfluous with respect to other 
indexing operators: if <p is to be indexed, then it does not matter if it was 
already a-indexed. The two propositions, as we will immediately see, diverge 
in a very deep way: each is consistent with one of two competing views on 
understanding actuality, a rigid and, respectively, an indexical view.9

T he RIGID v iew . According to it, areflects at each world one and the same 
world, the actual one. And it does so rigidly, that is, whatever world of 
evaluation we choose, “a ” always sends us to one and the same world a. 
Formally, we have:

6.4. F(a, w) =  a , for every w.

9 D. Lewis defends an indexical view in “Anselm and Actuality” , in Philosophical 
Papers, vol. I, Oxford University Press, Oxford, 1983; A. Plantinga, in The Nature of 
Necessity, Clarendon Press, Oxford, 1974, argues for a rigid view. See also G. Forbes, 
Languages of Possibility: An Essay in Philosophical Logic, Blackwell, Oxford, 1989, for a 
useful account of the current debate on the issue.
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To see what syntactical counterpart (6.4) has, I will appeal again to a back- 
and-forth argument. We get, for every </?, U (p ,a )  ~  1 iff I5(p, F(a, w)) =  1, 
iff U (a p ,w )  =  1. Moving back to the initial WORLD and model, we get 
D(a(^ =  woup,k) =  1, from which it results that (6.2) must be a theorem, 
and hence that it is true at the mirror model.

Thus, on the rigid account p  is actually true at a world w iff it is actually 
true, i.e. true at the actual world. The operator aalways invokes the actual 
world. Changing the world of evaluation rigidly keeps unchanged the world 
“a ” points to .10 11 The intuitive idea behind (6.2) is that a  is a backward­
looking operator: the current world w at which we want to observe what 
actually is the case is parasitic upon the actual one.

The actual world has a very interesting property: the operator a  is re­
dundant when the actual world is the world of evaluation:

6.5. cap =  tp

is true at a , i.e. U(a<p =  ip, a) =  1. Quine is a distinguished philosopher iff 
actually Quine is a distinguished philosopher, is bound to hold at the actual 
world.11 However, (6.5) need not hold at other worlds: for it is only actually 
(=  at the actual world) true, not necessarily.

T h e  INDEXICAL VIEW . On this view, a  will reflect at each world that very 
world. At w, a  reflects w itself; at u/, a  reflects u /, etc. This way, what 
world is actual depends upon the evaluation point: being actual is nothing 
but being the evaluation point. Once we change the evaluating point, what 
world plays the role of the actual world will also change. To get this result, 
it suffices to put:

6.6. F(a,u>) =  w, for each w.

Again, a back-and-forth argument shows that (6.6) makes proposition (6.3) 
true at each mirror model. Since (6.3) is in turn equivalent to:

6.3.1. w(a<p =  ip)

it follows that propositions:

6.3.2. □ (a<p =  cp)

6.3.3. a p  =  p

10 However, note that at this moment we have no guarantee that Otis unique.
11 This can be expressed formally by:

3.5.2. Qa(0op = ip),

which is a theorem under (6.2).
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are true at all worlds in all models. The difference from the rigid view is 
then striking: on that view, a <p ~  <p holds only at the actual world; on the 
indexical one, it holds at every world.

Both views agree, however, that the logic of actuality is best captured 
by specifying from the set W  of worlds of our language Jz? a world-indexing 
operator a, the behavior of which is modeled following that of the other 
world-indexing operators in W . But it is, though, possible to pursue a 
different, semantical, approach to actuality. According to it, we need not 
specify from the collection of world-indexing operators ‘in the world w\ 
some operator to mean ‘in the actual world’. Rather, we may try to define 
semantical conditions to the effect that some world will play the role of 
the actual one. To see how this approach works, remember that at LM1 
axiom (5.1): Hip —>• p  defines the standard property of the reflexivity of the 
alternativeness relation R: for every w, R(u>,u>), i.e.:

6.7. 3w f I(w ': w) =  w , for every w.

Thus, for each world u>, there is some adequate reflection w f of it in itself: 
we have U(wr(p ~  <p,w) ~  1 for every sentence <p. It is then difficult to resist 
taking w ’ be just the actual world at w. At w, the operator ‘in the world 
w h plays the role of: ‘in the actual world’.12 So, we will require that:

6.8. F(uj, in) =  w, for every w

holds. This condition is of course stronger than (6.7), and it entails that for 
each sentence tp, V(w<p =  p : w) — l . 13

It may look that this semantical approach enforces the indexical view on 
actuality, as opposed to the rigid one. For, indeed, in each world «7, it is w 
which is the actual world. In different worlds, different worlds are actual. 
W hat ‘in the actual world’ points to depends upon the context of evaluation. 
This description is correct, though partial. For it overlooks one distinctive 
feature of the present semantical frame. Specifically, at logics including LM1 
Theorem 5.9.1 holds at the original model C and WORLD A; too. Then it is 
true that for some world w, U{<p1 k)  =  1 iff I5{w<p  ̂k ) — 1, for every sentence 
<p. But then at the mirror model generated by £  and k  (and the function //), 
there is some WORLD kw such that 15 (<£>,&) =  1 at the original model iff 
Ufy, kw) =  1 at the mirror model. Now, by the definition of the mirror 
model, at the initial model the world  k  creates within itself a full, and

12 However, nothing prevents that for some ip, both U(w'ip,w) =  1 and Ofy, wf) =  0 
hold. Only at w, world w' looks like w; at some world w", it might look quite different 
from w.

13 Now, (6.8) is our old friend (5.9), and this defines expression: wunp =  wp. Once we 
adopt it, we move from LM1 to LM4.
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adequate, copy of the entire mirror model. So, let w be the WORLD which 
reproduces at the mirror model the WORLD k. Then at w  we have complete 
claims of what is going on at every world of the mirror model. Suppose, 
further, that at w  the world w itself is the actual world. But then, since w  is 
an exact copy of the entire model, it follows that w is in one sense the actual 
world not only at w, but also at the entire model. To assert that the present 
semantical approach favors an indexical or a rigid view on actuality is then 
ambiguous. If we consider the model as such, an indexical view looks to be 
the favorite. But if we look inside the WORLD which is the mirror reflection 
of the original w o r l d , and keep in mind the fact that a full reflection of the 
entire model can be met therein, then a rigid view on actuality appears to 
be preferred.
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