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ON THE ’DERIVABILITY’ CONDITION IN REDUCTION *

ADRIAN MIROIU

Balzer, Moulines and Sneed offer in a recent project* 1 an extensive 
discussion of the most important global intertheoretical relations. Among 
them, reduction occupies a central place of interest. It seems to me that 
the authors’ approach to reduction is important for at least two reasons : 
firstly, a precise and workable concept of reduction is advanced ; and 
secondly, the treatment they offer of it provides the most explicit 
statement yet of the views the three leading champions of struc­
turalism held at the end of the eighties on the role of language in 
the philosophical understanding of science. In this paper I try to 
scrutinize in more detail this later aspect. I start from the comments 
made by Balzer, Moulines and Sneed on the role of the ’derivability’ 
condition in reduction, and come to the conclusion that some of them 
are at best ambiguous and that the attempt at formally reconstructing 
that condition in An Architectonic for Science is not a satisfactory 
one. Finally, a new reconstruction of the role of the ’derivability’ 
condition in reduction relations is sketched.

I

Let T and T* be idealized theory-elements. For theory T to directly 
reduce to T* (T p T*), it is necessary that the following condition obtains :

(A) For all x, x* : if a:*£M * and {x*, x)£p, then x £ M .
Here M* (respectively M) is the set of models of T* (respectively of T), 

and p is a reduction relation, relating the potential models of the two 
theories (p M p*x Mp)2. As the authors put it, (A) expresses a general
condition of derivability of the laws of T from the laws of T*, through 
the mediation of p3. Thus ,in informal terms, (A) is simply taken to 
mean that4 :

(B) The laws of T can be derived (under translation) from 
those of T*.

* I would like to thank Professor W. Balzer for helpful comments and 
criticism on an earlier draft of this paper.

1 W. Balzer, C. U. Moulines, J. D. Sneed, An Architectonic for Science, 
D. Reidel, Dordrecht, 1987.

2 Ibidem, p. 277, (A) is in fact condition (3) of the definition DVI-5.
3 Ibidem, p. 275.
4 See also p. 308.
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However, when trying to put in more precise terms the logical 
relations between (A) and (B), one meets many and sometimes 
unexpected problems. One is this. The general concept of reduction 
was defined so that it would not amount to, or even yield, a mutual 
translation of the languages of both theories. So, (B) can be understood 
in a way which does not presupose any reference to the languages of 
the theories T and T*. To do that, we have first to define a law for 
theory T. Say that a law for T is a class X of its potential models so 
that M ^ X ;  and analogously for T*. Then, we have to take care 
that the ’derivability’ of law X from some law X* is mediated by p. 
The content of (B) can now be rendered by :

(C) For any law X of T there is some law X* of T* such that X *|j= X . 
Now our task comes to marking precise the meaning of the ’derivability’ 
relation l'j=. Clearly, l |=  cannot be defined by, say, X* C  X, for no 
connection is assumed between sets Mp* and Mp. There are, though, 
two intuitive requirements that have to obtain for l']= to hold :

(e. 1) X* must somehow depend upon X and the reduction 
relation p.

(c. 2) Whenever a model x* of T* belongs to X*, the corresponding 
model x (via relation p) of T belongs to X.

Let us try to analyse in more detail these requirements. First, 
observe that (c. 2) can be simply rendered by :

(c. 2’) for all X* and x ; if x *£M * and x *£ X *, then p{x*) =  x is 
such that x £ M and x £ X.
Second, since X* is that subset of M* containing all and only those x* 
which are p-related to at least some x £ X, (c. 1) comes to :

(c. 1’) X* =  {x * ; there is some x such that x£ X and p(x*, xj) 
We can define now the derivability relation l'j= as follows : X* j= X  
iff X* and X are so related that requirements (c. 1’) and (e. 2’) obtain. 
Consequently, (C) becomes :

i(C’) If X is a law of T, then for all x*, x :  if x* £ M* and there is 
sorne^x' such that x' £ X and p(x% x'), then, if p(x*) — x, x£  M and x £ X.

1 urthermore if we take X to be the class Mp of nil the potential 
models of T, then, given that the quantifiers ’for all x’ and ’there 
is some x’ range over the members of Mp, we can omit any expression 
like x C X (~  Mp). Thus, (C') simplifies to :

(C ) For all x*, x : if x *£  M* and there is some x' such that p(h:*, x'), 
then, if pfx*J =  x, then x £ M.
It is important to note that the clause : ’ther,e is some x’ such that 
p{x*, x )  ' — or, a bit more formally, ' (3x'J p (x*, x )  ' — states that 
x* is a member of the domain of the (partial) function p, i.e. 
x* £ Dom(p). It is now apparent that, if the content of (B) is rendered 
model-theoretically (though as a special case) by (C"), then actually we 
have adopted the reading provided by Balzer, Moulines and 
Sneed 5 of (A) :

5 Ibidem, p. 310.



(A') (Vx) (Vx*) (x*€M*C\Dom(p)-+p{x*)€M)
('(C") wais slightly modified to let the quantifier ’for all x' be, contrary 
to its occurence in (A'), nonempty ; for in (A') x does not occur in the 
scope of Vx).

To conclude, I do not agree with Balzer, Moulines and Sneed that 
(A'), and hence (C"), does not express a ’derivability’ condition of the 
laws of T from those of T*. It does express one, but without any 
reference to languages. In this case, the phrase ’under translation’ in 
(B) must be taken to refer to the connection between M* 's and M 's via 
the reduction relation p. Note also that in fact (C") and (A') are logically 
equivalent to (A). So, if they are taken to express the meaning of (B), 
then the ’derivability’ condition is simply equivalent to (B).
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II

However, Balzer, Moulines and Sneed seem to take the phrase 
’under translation’, and hence the whole expression (B), as involving 
linguistic considerations. They take ’translation’ to refer to a relation 
between sentences of the language L of T and sentences of the language 
L* of T'"', and they conceive of laws as linguistic entities, which must 
he related by syntactic connections. Of course, if no committment to 
language is made, (A') and (C*) might be regarded as equivalent to (B),
i.e. to the claim that the laws of T can be derived (under certain 
qualifications) from those of T*. But, if we consider that T and T* 
involve linguistic constructs, then, as Balzer, Moulines and Sneed put 
it, the content of (B) becomes 6 :

(D) (Va£aJ (trans'^a*) |—a)

where a and a* are the sets of axioms of T, and respectively of T*, and 
trans is a function mappinp the sentences of L to the sentences of L*. 
Since there is no possibility of confusion here, I shall simply write |— 
for |—l. Our problem concerning the ’derivability’ condition now comes 
to asking if, and under which conditions, (A') (or, (CT)) is logically 
equivalent to (D).

Let me consider here the proof, summarized in TVI-15, that the 
two expressions are, under certain conditions, logically equivalent7. 
The proof is that (A') is equivalent to (D) if the following conditions 
obtain :

T, T* are idealized theory elements with languages L, L* and a, a*, 
trans and p are such that :

1. a) a CT SentfL), a* Cl Sent(L*)
b) trans : Sent (L)-> Sent(L*)
c) L and L* are first-order languages

d) p : Mp" -> Mp is a partial f unction

e This is implicit in the statement of theorem TVI-15, p. 310.
7 Ibidem, pp. 309—311.
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2. a) Mod((a) =  M, Mod(a*) =  M*
b) Rge(p) =  Mp
c) for all a €  SentfD; and all x* 6Dom{p), 

p(x*) 1,'= a iff x* l j=  trans(a)
3. a) for all oc*€a* there is some a such that trans({x) =  a* 

b) trans'1 (a*) is finite
I have stated the conditions (1) — (3) in a different way from the 
one given by Balzer, Moulines and Sneed in order to make clearer 
their import. Conditions (1) are structural, and show the logical nature 
of the concepts involved ; conditions (2) are more material, and involve 
the logical properties those concepts must have in order to be used in 
the formal reconstruction of, e.g., the relation of reduction. Conditions 
(3) are more unusual, being those special assumptions necessary if the 
logical equivalence of (A') and (D) is to be proved. Thus, there should 
be no surprise if in what follows, I concentrate just on the use of 
(3a) and (31b) in the proof of TVI-15.

Condition (3a) iis essentially involved in the proof of both the necessary 
and the sufficient parts of TVI-15. But I think that (3a) is highly 
unrealistic, as Balzer, Moulines and Sneed seem to admit themselves 
I can’t immagine any genuine (i.e. non-symmetrical) reduction relation 
which would let all the counterparts of the axioms of T* be among 
the axioms of T. However, my main argument against (3a) is that it is 
not even necessary in the attempt to show that (B) conveys the same 
information as (A). I shall argue below that (D) is not a proper 
formulation of the language-theoretic content of (B), but let me first 
say a few words about (31b). This is a too strong condition, and in fact 
the proof of TVI-15 does not require it. Balzer, Moulines and Sneed 
use condition (3b) to show that (A') implies (D) in the following way. 
Let a £ a. It was already proved that :

Modftrans' {(a*)) CT Mod( {a) ).
Condition (3b) together with the completeness theorem for the first­
order language L seem to entail that trans (̂a* | or But in this step 
of the proof the appeal to (3b) is not necessary. Indeed, the (generalized) 
completeness theorem for first-order logic is this8 9 : if 2 is a (finite 
or infinite) set of sentences, and a is a sentence,, then Mod(2)CMod(a) 
iff 2|—oc. So, trans'^a*) need not be finite to yield desired result. 
I suspect that some confusion is involved in the proof given by Balzer, 
Moulines and Sneed of Theorem TVI-15. Recall that trans 
for a *£ a * , is a sentence of L, and trans''(a*) is a class of sentences 
of L. If it is finite, then A trans' '{a*) is the conjunction of the sentences 
in trans'l(a*), and it is indeed a sentence of L. Then, by completeness, 
Mod(2)CMod(K) iff |-2-+a, and in our case we get

8 Ibidem, p. 308.
9 See, e.g., C. C. Chang, H. J. Keisler, Model Theory, North-Holland, Amster­

dam, 1973,
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D'J (Vcc£a) (\~Atrans ifa*)-+<*)■  . '
It is easy to prove now that (D') implies (D) (the deduction theorem 
is essentally used here) ; but (D) implied (D') (again by use of the 
deduction theorem) only if (3b) holds, i.e. if trans~](a*) is finite.

111

I think that the account of the significance of TVI-15 is dramatically 
faulted by a misunderstanding of the meaning of (B). When it is stated 
in (B) that the laws of T are to be derivable under translation from 
those of T*, what is meant is not, of course, that we have to translate 
the laws of T* into laws of T ; indeed it is misleading to concentrate 
upon the derivability of the laws of T from those of T* in T ! Rather, 
what (B) implies is that the laws of T* allow of the derivability of 
the translations (in L* !) of the laws of T. To see that, let us first 
consider a syntactical analogue of (C). Syntactically, T and T* aro 
classes (deductively closed) of sentences. A law of T is a sentence X 
of L such that T |— X ; and analogously for T*. We have also to take 
care that the ’derivability’ of a law X from some law X* is mediated 
by the reduction relation p. If theories T and T* are constructed as 
linguistic entities, then the content of (B) can be rendered by :

(E) For any law X of T there is some law X* of T* such that
x * |h

Apart from the fact that in (E) the term ’law’ refers to things 
quite different from those it referred to in (C), the only difference 
between (E) and (€) is that the ’derivability’ relation ’ | | = ’ has been 
replaced by the ’derivability’ relation ’ l|—’ ; the former is a semantical 
relation, the later must be conceived of as a syntactical one. How can 
we make ’ ||~ ’ precise ? .Clearly, it, cannot be defined diredtly in 
terms of I-l*, for X* is a sentence of L*, while X is a sentence of L ; 
and, for the same rasons, it cannot be defined directly in terms of |— L. 
But we can state, as we did in the case of ||= , two intuitive require­
ments that have to obtain for f|— to hold :

(e. 1) X* must somehow depend upon X and the reduction relation p.
(e. 2) Whenever X is derivable from T, X* must be derivable 

from T* too.
Now we can define the ’derivability’ relation ||— : X* ||— X iff X* and 
X are related so that conditions (e. 1) and (e. 2) — or appropriately 
reconstructed versions of these — obtain.

Observe, first, that the requirement (e. 2) states just that :
(e 2') If T | L X, then T* | - L* X*

Since X is arbitrary, we can infer that '
(e. 2") For all X, if T | - L X, then T* | - L* X*

Recall that T and T* are deductively closed classes of sentences, hence 
if (e. 2') holds for any a £ a, then it holds for all X and consequently 
(e. 2") holds also. So, suppose that

<e4) For all a €<*: if T |—L a, then T* |—L* a*



But clearly for any a € a, T |— l a holds, and hence (ep is logically 
equivalent to :

(e2) For all a € a : T* |— l* «*
Since, moreover, T* is 'deductively closed and is axiomatized by a*, 
we have

(e3) For all b* : T* | - L* b* iff a? | - L* b*
By (e3), (e2) is logically equivalent to :

(e4) For all a € a : a* |— l* a*
Surely, (e4) entails (e. 2").
. Now, let us move to condition (e. 1). The first candidate for X* 
that comes to mind is simply trcms(X). Hence, (e. 1) could tentatively 
be made precise by :

(e. 1') X* =  trans(X)
and in particular we would have tx* == trans(<x). If we take this route, 
we can now return to expression (E). We get a precise version of it, 
once we substitute oc* in (e4) for trans{a) :

(E') (V a £ a) (a* |—l* trams(a))
(E') can be nicely compared with (D). The difference between them 
is that while with (D) Balzer, Moulines and Sneed assumed that the 
’translation’ mentioned in (B) is a translation in L of T*, and hence 
tile ’derivability’ condition concers derivability in T, (E') moves the 
whole enterprise inside L*, and hence the deductive powers of T% 
not of T, are considered. I think that this move is in a much larger 
agreement with our intuitions about the reduction relations.

Balzer, Moulines and Sneed’s approach could also be objected to 
on the following ground : if X* is constructed as trans(X), then the 
only connection between theories T and T* is provided by the function 
trans. But clearly this cannot be correct. In their informal comments 
on (B), Balzer, Moulines Sneed explicitly claimed that the derivation 
of the laws of T from of T*, under translations, must be conceived 
as being done through the mediation of p ; and we accepted and 
worked with this mediation when we reconstruced in model-theoretical 
terms the ’derivability' condition as (C). However, nothing in (D) 
involves this mediation ; and the same happens with (E') ! So, I 
suspect that the failure to syntactically reconstruct (B) as somehow 
involving the relation p is one of the main reasons why the need arose 
for Balzer, Moulines and Sneed to posit such unrealistic and even 
implausible conditions as (3a) and (3b) to guarantee the equivalence 
of (A) to (reconstructed) (B). -

It seems then that (e. 1) does not receive a proper understanding 
if it is reconstructed as (e. 1'). Indeed, if the law X* of T* corresponding 
to the law X of T is exactly the translation (via the function trans) 
of X, then there is no place for the reduction relation p and for its 
mediating role. On the contrary, if p is not to be neglected, (e. 1') 
should be modified as :

IQ2 A D R IA N  MIROIU 6
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(e. 1") X* =  S* trans(X)
where S* is some sentence corresponding in L* to the semantical relation 
p. I shall have more to say about S* in the next section. It should be 
noticed that, if (e. 1") is preferred to (e. 1'), then a proper reconstruction 
of (E) would be, rather than (E'), the expression :

(E") (V a G a) '(a* |~ l* S * transact))
By the deduction theorem, we get :

(£"') (V a G a) (a*, S * | L* trans(y.))
and (E'") is logically equivalent with (E").

If (E'"), rather that (D) is taken as a proper reconstruction of the 
’derivability’ condition (B) — and languages in which the theories are 
formulated are considered — then the very problem to which TVI-15 
tried to give an answer changes in the following sense : the task is to 
show that (A) amounts to ’derivability’ (syntactically viewed), i.e. that 
(A) is logically equivalent to (E"). But since (A) was shown to be 
logically equivalent to a (semantical) ’derivability’ condition (A ), the 
task will consist in a proof that (perhaps under certain conditions) (A') 
simply means (E").

The result I want to prove is summarized in the following
Theorem: If T and T* are idealized theory-elements with languages 

L, L*, and a, a*, trans and p are such that conditions (la) (Id), 
(2a)—(2c) and

(3 c) There is some sentence S * £ L *  such that ModfSp =
{ x *  : (3x ) p (x *r x )} 

hold, then
(A') (V x) (V x*) (x* € M* fl Dom(p) p<x*) G M) 

iff
(E") (V a G ci) (a j—l* S* -> trans(x))

Proof.
I. (E") implies (A')
(i) by the deduction theorem, (E") yields
(V a G a) (a*, S* |—L* trans(a))

Recall that (i) is in fact the expression (E'").
(ii) by the completeness theorem for the first-order logic of L,

Modfa*) fl Mod/S'-) C  ModfiraTW(a)), for all i G a .
(iii) {x* : (3 x) p ((x*, xj} =  Domi(p)
(iv) Mod/a*;n Dom<p)CZ Mod/trans (a)), for all « G a  (from (ii) and

(iii), by (3c)) :
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(v) Suppose that x* £ Mod(a*) f| Dom(p)
(vi) x*€Modftra7is(a)), for all a € a (from (v), by (iv))

(vii) x* ¡== trans(<x), for all a 6 a (from (vi))
(viii) since x* £ Dom(p), there is some x £ M p  such that p(x*) =  x
(ix) p(x*) ¡ =  a, for all a € a (by (vii), (viii) and (2c))
(x) p{x*J 6 M (from (ix))

II. (A') implies (E")
(xi) let x*£M*nD°mi(!pi). Since x *£  Dom(p), p(x*) exists and it 

belongs to Mp.
(xii) p(x* )£M (by (A'))
(xiii) let a € a. Since p(x*) G M, we get p{x*) ¡ =  oc
(xiv) x* ¡ =  transfa) (by (xiii) and (2c))
(xv) x* £ Modftrans(a))

(xvi) if x *£  M*f)Dom(p), trans x *£  Modftrans(a)) (from (xi) and (xv))
(xvii) since x* was arbitrary, we have shown that 
M* f) Dom(p) C. Modftrans(a))

* (xviii) by the completeness theorem and (3c), 
a*, S* |—L* trans(<x)
(xix) since a 6 a was arbitrary, we get 
(V a £ a) (a*, S* |— l* trans>(a))

and, by the deduction theorem, (xix) — which in fact is (E'") — 
implies (E")

IV

The proof of my substitute of TVI-15 heavily relies upon the use 
of the additional condition (3c). It seems necessary, therefore, to reflect 
a moment on its use in the two parts of the proof.

First, we have to observe that, formally speaking, there is no 
a  priori objection to Dom(a)’s being represented as a sentence of L*. 
For, indeed, the entities of which it makes sense to ask if they are 
semantical counterparts of the sentences of L* are collections of elements 
of Mp*. And, though p is a collection of pairs of potential models like 
(x*, x) with x* 6 Mp* and x £ Mp, Dom(p) == {x* : (3 x) p{x*, x)} is a 
proper subset of Mp* and therefore it makes sense to ask if there is a 
sentence 5* of L* such that Dom(p) is exactly the class of models of S*. 
Intuitively, the models collected in a set like Dorn(p) satisfy some 
property, and thus allow us to separate them. It is natural. I think, to 
take that property to consist in those conditions which the models of the
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reducing theory must satisfy in order to correspond in an appropriate 
sense to the models of the reduced theory. A paradigmatic instance 
of intertheory reduction in the relation between Rigid Body Mechanics 
(RBM) and Classical Particle Mechanics (CPM). From a structural 
perspective, a potential model of RBM consists of a domain comprising 
a single rigid body, together with functions which include mass, position, 
force, moment of inertia, etc. A potential model of CPM consists of a 
set of particles, and the basic concepts of CPM are represented as 
functions like mass, position and forces acting on the elements in the 
domain. An appropriate reduction relation between models of the two 
theories pairs the rigid body of the first model and the set of particles 
belonging to the second. The kinematics of the rigid body corresponds 
to the motion of the particles in the domain, and the various forces 
operating on the rigid body are conceived as corresponding to an 
appropriate composition of the components of the forces acting on the
particles* ,. .

By (3c) there must exist a syntactical counterpart S to this
structural conditions. Roughly, S* states that all particles are rigid, i.e. 
that the relative distances of particles remain fixed over time. So, S* 
is a sentence

(V p) (V p') (V t) (V t') (/s(p, t) —  s(p', t)/ =  /s(p,t') -  s(p\ t')/)

of the reducing theory CPM.
Howerer, things are not as simple as they might appear to be. 

For the move to a syntactical fact — S* is a sentence of L* is not 
entirely obvious, and, moreover, sometimes it might even be implausible. 
Consider the two steps in which condition (3c) was used in the proof 
of the theorem presented in the previous section. In (i-v), condition 
(3c) was used to get, starting from a sentence S*, a class Dom(p) of 
models, i.e. the move was from languages to (classes of) structures. Now 
turn to (xviii), where (3c) was, used to produce a sentences S* corres­
ponding to a class Dom(p) of structures. This move was from (classes 
of) structures to language.

The every sentence of a first-order language one can always find 
a class o structures of that language which contains all and only 
those structures in which that sentence is true. When applied to our 
special case, this basic fact of model theory comese to :

(F) if a* is a sentence of the language L*, then there is a class 
Mod(a*) of all and only those Mp*’s in which a is true.

* This composition procedure can be defined, in the case of position and 
mass, by

R(m) =  df. 2 m(x) for all particles p.
R(s t) =  df. s(p, t) for some particle p such that the following holds .

for all t, R(s, t) = m(p) • s(p, t) 
R(m)

The composition R(f) of forces acting on the particles must be constructed 
so that Newton’s second law holds, i.e.

R(f)— df. Rj(m) • D2R(s, t).
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Since (F) must be true, the proof of (iv) by (3c) is sound. It is im­
portant to note that in -this case (3c) was used not to guarantee that a class 
of potential models of T*, corresponding to S*, must exist — for this 
job is done by (F) — but to indicate which is that class ( =  Dorm(p)). 
Hence, condition (3c) was used only as a means to inform us about 
the meaning of S. A more interesting use — and I suspect that this 
is the proper function of introducing (3c) — occurs with step (xviii). 
A well known result in model theory states that not all classes of 
structures of a certain language can be correlated with sentences 
of that language. Say that such a class is elementary if it can be 
correlated with a sentence, i.e. if it is the class of all the models
of that sentence.

But there is no a priori reason to take the class Dom(p) itself
to be an elementary one, i.e. one that has a linguistic counterpart
in L. However, here condition (3c) comes in. It assures us that Dom(p) 
has such a counterpart. (3c) does not entail that whatever arbitrary 
classes of potential models of T* there may be are elementary ; it is 
concerned only with the class Do-m(p) and assures that it is elementary.

One might resist this line of argument by objecting that it is
not clear why, for each pair of idealized theory-elements T and T* 
and each reduction relation p C  Mp* X Mp we would like to consider, 
the class Dom(p) should be elementary. For many pairs of theories 
and for many relations p connecting their potential models, one might 
indeed find out that condition (3c) holds. The case of the reduction 
of RBM to CPM, as a matter of fact, fits condition (3c). But there 
are arbitrarily many ways to construct the reduction relation p, and 
we have no guarantee that Dom(p) is always elementary. And if S* 
does not exist, no proof of the step (xviii) is offerred.

When faced with this objection, we could of course take the 
heroic route and maintain that (3c) is true : the sentences S* always 
exists. However, there are other, weaker, reactions to the objection. 
A first strategy is to try to turn all the occurrences of S* into empty 
ones. To do that, replace (3c) by :

(3 c') M*ClDom(p)
Theen the task of the theorem is to prove that (A') is logically 
equivalent to :

(E") (Voc£ a) (a* |—l* trans(x))
-and in (E') no reference to S* is considered. To prove the theorem, 
the only step in need of reelaboration is (xviii). But observe that (3c') 
entails that

M* Cl M* f) Dom(p) 
and this, together with

(xvii) M* f) Dom(p) Cj Mod(iran,s(o()), for all a £ a entails
M* ^  Mod (transía)), for all «  € a 

which by the completeness theorem yields immediately (E').
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If s* were allowed to exist, then (3c') would be equivalent (by 
completeness) to :

a* |— l¥ S*
But clearly this is not plausible, at least if the relation which the 
theory T bears to T* is that of being directly reducible. (Indeed, if 
we take T* as a specialization, for which the reduction conditions 
expressed by S* hold, of some other theory T*', in this case we meet 
a ease of indirect reduction of T to T*').

Another reaction to the objection against S* is to accept that 
in the general case there is no linguistic counterpart of Dom(p), taken 
as such ; but emphasize that we could always handle, with linguistic 
means, all contexts in which Dom(p) occurs. For exemple, look again 
at (xviii). To provide a linguistic counterpart to it, I assumed that 
we were in need of sentences corresponding to M*, to Dom(p) and to 
Mod(£ran-.s(a)).. And, while we already had the required sentences 
corresponding to the first and the third class of potential models of 
T* involved in (xviii), the only additional supposition we had to make 
seemed to be this : some sentence of L* should be correlated with Dom(p).

I think that this argument is not compelling. Indeed, if just one 
more sentence is needed, why not ask that it be correlated with 
Mod(a*J f) Dom(p), rather than with Dom(p) ? If the intuitive idea that 
Dom(p) expresses some reduction conditions is retained, while the 
suggestion that Dom(p) determines a sentence is rejected, then it is 
still possible to regard Modfa*) fj Dom(p) as a restriction on the class 
of the structures which satisfy the axioms a*.

To obtain such a restriction, an appealing idea is, of course, to 
call for a sentence S* which, when added to a*, brings about the 
desired results. It is possible, though, to get the same results by taking 
a quite different route. Let a* in L* be some logical consequence of 
a*. For each such expression a* one can get a collection Mod (a*) of 
all its models. The idea of the present strategy is to claim that, if 
Mod(a*) is elementary, then the collection Mod(ot*) f) Dom(p) of models 
of L* is elementary too, i.e. there is a sentence oc*p the models of which 
are exactly the elements of Mod(a*) fj Dom(p). To get an intuitive grasp 
of what a sentence a*(p) of this kind looks like, let me consider again 
the relation between OPM and RBM. Let, e.g., a* be a sentence (Vp) <p(p) 
of CPM. Roughly speaking, a*(p) is the assertion that (p holds if restricted 
to rigid particles. To put it in more formal terms, a*(p) is

(V p)(V p')((V t)(V t')(/s(p, t) — s(p', t)/ =  / s(p, t') -  s(p', t’) l  9(p'))
There is a very deep difference between the strategy based on (3c), 
and this strategy of restricting quantifiers occuring in the sentences 
of the reducing theory. Indeed, while in the first case it is supposed 
that one can get some sentence S*, which could then be used in 
reduction, in the second case no such sentence is provided. Rather, 
one has a systematic means to produce, starting from sentences of 
the reducing theory, those sentence of the same theory which help 
to devise the reduction relation.


