LOGIQUE ET EPISTEMOLOGIE

MODAL AXTOMATIZATIONS OF THEORIES,
RAMSEYFICATION AND THEORETICITY

ADRIAN MIROIU

The aim of this paper is to develop an argument against the seman-
al definitions of the theoretical. It is specifically directed against Bal-
I's view, as expressed in (1); but I believe that it covers all attempts

theoreticity which essentially involve the standard notion of a model

a theory. Tt is argued that modal (or : modal and possibilistic) axioma-
zations of theories could be considered with a view to dissolving this
it of argument. The most important result is that a simple logical
+iterion of the “‘theoretical in a given theory’ works with modally (and pos-
ibilistically) axiomatized theories.

I. Balzer’s approach. Roughly speaking, his view is this : let B be
, theory. Semantically, Bis given as a class of models. A model of a theory
s thought of as a typified structure in which there occeur sets of objects
wind relations (in particular, functions) over those sets. A function f of B
15 B-definable iff the interpretation of f is uniquelly determined for all
models of B. Now, fis called theoretical in a theory 7'if it canbe detined
in a subtheory B of I Balzer notices that in some cases B-definability
can he appropriately given by use of, e.g., equivalence “up to transfor-
mations of scale’” or “up to liniar transformations”. Second, he claims
that, to be precise, the above definition of the theoretical needs a condition
that 7' °’s invariances be respected. Let « and y be in B and let them differ
at most in their f-components (write x, = y, in this case); then f, = f,
(or: f, == « f,) with, e.g., f, the interpretation of fat .

It should then be noted that the only invariants Balzer seems to
take into account concern relationships which : 1) hold among different
models of T'; and 2) concern the zalues of the functions of 7'

Commenting on the second of these requirements, Balzer notes
(1, p. 135 n), that his definition of the theoretical hasan easy and adequate
interpretation in terms of “theory-guided” measurement (of the values
of function f for some admissible argument). Balzer suggests that under
such an interpretation his criterion can be nicely compared with Sneed’s
“informal” one (6, p. 31). (According to Sneed, these invariants express
“constraints” on (the values of) f, i.e. cross-connexions among models
of T1).

1 1t is this sense in which a function’s being or not theoretical at a given theory is
not an ‘“empirical”’ matter (if ‘“empirical”’ regards only what is or is not going on in (or

al) a model).
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Thus, if some relation A holdsat any model x in (an appropriately
ined class) B of models of 7, say that 4 is a T-invariant only if it
icerns the values of a function f of 7', e.g. 4 has the form f (d,, ... d,;
...ay) =1k (EeR). Consequently, not any cross-connexion among
dels of T which concerns some 7-function f signals the 7-theoretical
ure of f; one needs only cross-connexions regarding the values of f.
~refore, the only interesting thing about f with respect to theorveticity
nes to determining, at any model and for any admigsible arguments,
clation f does or does not hold.

The formalization given by Balzer to classical particle mechanics
PAf ) provides a suggestive illustration of this point. Function s,
lzer argues, is CPM-nontheoretical, for, in general, s, # as,. However,
is still possible to show that function s gives birth to certain cross-
ations among CPM-models. Let B be a subtheory of CPAM such that
ind y are in B and x_,=y_, i.e.,,  and gy differ at most in their
omponent. Then s, and s, are necessarily linked by

1.1, s{p, t) = sy(p, t) + vt + b

some constants » and b. Balzer belicves that the invariant expressed
(1.1) is not significant to the theoretical/nontheoretical character of
iction ¢ at CPA. Now, by differentiating (1.1), one gets :

1.2 8(p, 1) = §(p, 1)

Assume for a moment that in reconstrueting CPM one would take
¢ a primitive notion, while s would be a derivative one. Then,according
Balzer’s criterion, (1.2) leads to § ’s being CPM-theoretical.

The trouble with this view is that § could not be primitive, for one
xnld not then be able to give conditions to fix, for any pair (z, y) of
2 M-models, the constants v and »%. But it is of course possible to treat
8 an effective function of CPAM. Then, by (1.2), § needs to be CPM-
coretical, while s be CP M-nontheoretical. But, by a purely mathematical
vice, i.e. by differentiating, one gets a theoretical funection from a non-
soretical one. I think this conclusion does not fit very much our intui-
ns ; together with the fact that Balzer gives no reason for his choice of
¢ distinctive features of the theoreticity-involving-invariants, this shows
at something must be wrong with our ways of thinking of what is for
T-function to be given. My ecriticitm will be focused on the assumption
1iat having the values of a function of a theory at any model of it and for
1y admissible arguments is a sufficient condition for having that funetion.

These comments are intended to suggest that Balzer’s criterionof
1e theoretical is, somehow, much toonarrow. In this sense, the modal
iterion I proposed in (3) seems to be more general, for it relies on the
vistence of any cross-relation (“constraint’’) on the theory’s functions;
ccording to the view about theoreticity expressed in that paper afunction

% However, the history of classical mechanics shows the long-ranging effort to effecti-
¢ly determine, for each x, the values of v and b with respect to an absolute reference
ystem z, (sx, (p, {) denoting the absolute position of particle p at {). It is worth-noting
nat Newton, who did admit of the existence of x,, treated spatial rotations of the position
unction s as relevant to the proof of the existence of an absolute reference systemn. There-
ore, it would be interesting, perhaps, to study the consequences of including space rotations
n Balzer’s reconstruction of CPM,
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fis T-theoretical itf its nuse at 7' essentially involves cross-relations among
models of 7.

It follows then that a function’s property of being or not theoretical
in a theory is relative to the kinds of cross-connexions oneisready to take
into account in formulating his definition of the theoretical 3.

The argument to be developed below is not committed, however,
to any view about the nature of these cross-connexions; it seems to me
that it makes its point both when my view or Balzer’s one are concerned .

TL. On the nature and strength of the argument. The argument against
the semantical definitions of the theoretical T wish to present below applies
to all those attempts which :

2.1. Assume that a function f of a theory 7T'is given iff its values at
any model of T and for any admissible arguments are given. As T tried
to argue in section I, this assumption is essentially involved in Balzer’s
approach to theoreticity. Let T be CPM ; then, the argument asks e.g.,
that to completely determine function m is to determine at any model 2
of CPM the mass of each particle appearing at x.

2.2, Assume that the models of 7 are set-theoretical entities. This
condition requires that each model of 7' be describablein set-theoretical
terms.® My argument consists in showing that the class of T°s models
can be redescribed in a non-standard way.

It should be noted that the argument does not assume the possibility
that 7 be a first-order theory, but thatits models be set-theoretical cons-
tructs. The argument is closely related to Putnams’s interpretation of
the Lowenheim-Skolem theorem (5) : Patnam has persuasively argued that
there arc no systematic means to divorce intended from non-intended
models of a theory. The present approach is committed to the claim that
one cannot select intended interpretations of a theory’s function, though
all its properties (including its being or not theoretical at that theory)

3 I think that the most important difference between Balzer’s criterion of the theore-
tical and Sneed’s one is this: constructing a function as 7T-theoretical is, according to Balzer,
a by-product of the construction of class M7 of T’s models. On the contrary, Sneed takes
the theoretical character of a function as a precondition of the construction of M. Thus,
while with Sneed the notion of consiraint needs to be primitive, with Balzer it does not.
It is for this reason why his criterion of the theorctical concerns nothing but the values of
T’s functions at any 7-model, the comparison of thesec values being a derivalive maller.

Note, however, that one could view my use of the alternativeness relation R (defin-
ed in section V below) as a means to show that the two strategies towards constraints
are equivalent. For one can slart either with constraints (identified with alternativeness rela-
tions like R) and define then what is or is not necessary at a certain model — as modal logi-
cians use to do; or he can proceed as Balzer did and define then relalions R (This sort
of approach to constraints was developed in [3]).

4 My definition does not lead, however, to inflationistic inventories of theoretical func-
tions, e.g., to s’s being € PM-theoretical. I avoid this unhappy result by denying that (1.2)
‘really expresses a constraint at CPAI and by arguing thatitis a constraint on s only at PK
-(particle kinetnatics) of which CPAf is a theoretization. I take then (1.2) to express a cross-con-
nexion among models of PK.

5 The essential claim is that the descriplions of the models of 7 and the cross-relations
-among them be translatable into a set-theoretical framework. That is why I think that the

argument also holds against Sneed’s restatement of his ideas by use of the theory of categories.
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wre preserved. But it diverges from Putnam in that it does not concorn
heories (which have models), hut the class of the models of theories @,

Balzer defines a model 2 of a theory 7' as a Wpificd structure =
= (D Dyos Ay oo Ay fia s .f,,_,) where sels D, , (of “()])_]C( ts7?)
ire (alled “ba\c set\”, sets A,,dw calicd “auxiliary base rets” and Jia
e relations over 4, ’s and D, , s, which, of eouise, could he functions.
\t CPM, eg., k=1and D, is the set P of particles; 7= 3. the auxiliary
vase sets being an open mtuval Tc R, R* or R?® (together with rela-
ions and operations on them), # = w -+ 2, CPJ tunctions being the
wosition function s, the mass function m and forces f; (compound forces)
t=1, ..., m)

Let T be a theory and let M, be the eclass of its modols. Define,
or each model z, a set G, ={g:¢9 = (gl, coayq) and ¢, D, ., > D, ,
re=1,..., Ic) is a bijective function}. If » € ’II, and ge@G,, define a.
tructure y = #* by: y = (Digy oo Diys Au/; oo Ay o oe Jfap)s
vith D,y =D,, (r=1,... Ix), A,y = AH (r= 1, D) and” for

ach (i =1, ... 2), f,,,(dl,... desay, .o ) = fi(g(dy), ... g(dy); ayy. ..
..a), where al, ... ap are in A, ’s and ¢(d,) = (],(d ), for d, eD,,
w=1,...8).

Lemma 1. Each model « in M, is a structure p°, for some g & G,.
r'he proof is simple, once we observe that G, is a group, with the compo-
ition operation “o0” defined by: gog’ = (g, 0 9], - .. gi © ¢i). Then there
s one and only one 9o in G, so that Yo, (d) =d for each d in D,, (r =
=1,... k). Let zbe in My ; then y» is'exactly # and therefore structure
o has the form a¢ for some ¢ in @,.

Lemma 2. If x € M, and ge@,, then-a2? € M,. The proof is left
o the reader.

From lemma 2 it follows that if 29 is a model, then ()" is a model
oo. Indeed, by virtue of the definition of structures a¢ and (x°), it is
wossible to show that (a7)?" is x#¢'; but, @, being a group, go-¢ = 9"’ €@,
wnd thus ¢ is a model x£”.

Define set @ by : G = {Q, : z € M,}. Let k be a function ¢ - U G
o that R(G,)e€ G, for each G, in @; let A, be the k-function of which it
iolds that %, (G,) = g, € G, for each G, eG. (It is important to note
hat to make use of h-functions we assume of the axiom of choice). For any
ixed function? of this sort,let H, be a function from M, to M, so that
Ty(@) = aCa,

Theorem 1. H, is bijective.

Proof: 1) It & # &', then H,(x) # H,(2'). The consequent of this.
mplication makes sense only if ¢, = G,~. Then there is a model ¥ so:
hat #i8 ¢ and 2’ is y¢', Now, from H,(x) = H,(x') resulls that ye#Gs =
= y¢°M6a) and therefore gokh (Q,) = g’ ok (G;), which holds only if
1 = ¢'. But in this case y* = y¢, i.e. # = &', which contradicts withpre-
niss ¢ # a’.

¢ The argument shows that something must be wrong with the way we usually think
f theories. It seems to me that the standard notion of a model-of-a-theory must be res-
»onsible for the counterintuitive import of the argument. It looks to me that a more general

aotion of model, grounded on appropriate semantical assumptions, is needed. But it is not.
the aim of the present paper to try to develop in some detail this idea.
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2) H, is on. Let € M, ; because ¢, is a group, there is some g
in G, sothat g o b (G,) = g,. But a# i3 a model and consequently H,(x%) =
= xg""(Gur) = ko = g.

III. Statement of the argument., My argument against Balzer’s
:semantical definition of the theoretical is concerned with the way in which
-a function f; of a theory T is thought of. Following Sneed, call f; the
i-th abstract function of 7 and say that f, is the concrete function
subsumed under f; and which appears at z (in the logicians’ jargon,
fi- is the interpretation of f; at «; note that Balzer himself made an ex-
plicit use of this spelling on page 133 of this paper (1)). By the first of the
two assumptions set forth in section II above, knowing f; is knowing
-all functions f.,,, i.e. the values of f, . 's for all admlsmble arguments.

Then it is possible to identify (the intension of) f; with a functlon
F, defined on M, and having as values concrete functions: F(z) = fi,
(fi,z being the extension of f; at z).

Now, assumption (2.1) is split into two parts. First, a function f .
is held to be determined at model « iff the value of f; ,(dl, cedgyan, .

.ap) is determined for any argument (d,, ... d,; a,, ... a;); and second,
a function fi is held to be determined at theory T'ift the value of I‘t(m)
is determined for each z in M,. Obviously, the theses involved in (2.1)
.gshare their logical form; however, the argument to be developed below
concentrates mainly on the former one, while the latter will not be ex-
plored in much detail (though it is itself subject to the reiteration of the
.argument ; see also for this issue note 14).

However, these two theses do not succeed in supporting Balzer’s
view on theoreticity : he takes (2.1) to involve a third one, namely that
functions f; » do uniquely determine function ¥ ; or, to put it in other words,
funetions f;, (i.e., the extensions of f;) are required fo single out one na-
tural (or: mtended) way to construct function F,, i.e. the intension of
Jo at class M, 7.

Now, it is possible to lay down the structure of my argument. It is
argued that : 1) assumption (2.1) does not support Balzer’sadditional the-
sis; 2) assumption (2.1) brings about nonintuitive consequences, when
‘used to Balzer’s purposes; and 3) Balzer’s view can be reconstructed on
-strong modal and possibilistic de re hypotheses.

Let us first observe that the definition of F; could be restated as:
Fix) = f, Hyy () The core of the first step of the argument is this: by
subsmtutlng hy by b in the above expression, all the formal properties
of F;, including its 7-theoretical/T-nontheoretical character, are preser-
ved ; we have no means to choose a single (natural) way to construct the
i-th funetion of theory 7. Indeed, let we start with the following (and, as
proved below, equally reasonable) definition of #,: F; (z) = Jor 2 BY
this definition, the extension of f; at = is not fi, but fiy @, ie fiy
(with & (G;) = ¢ and y = 27). Suppose f; is, e.g., a function with values
in [R. Balzer’s intention with his criterion of the theoretical was this : the

7 1t is, perhaps, worth-noting that in this sense Iy is definable with respect to the
class {Ii 2: ©€ Mp}. However, I slmll not he concerned in this paper with the use of Bal-
.zer's criterion in metaiheory.

e,

~—rge s
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value of f; at = for some admissible angumont (dyy ... ds5 ap ... ap) is
k (ke R) iff

.(L‘lzfi_x(dl, ---ds; Qyy .. GP):k

The first step of my argument amounts to éonstructing fi in a quite:
different way by letting its value at z for some admissible argument
(dyy ... ds; @Gyy...ap) be k iff

2 filg(d), ... 9(d)sa,...a,) =k

But, a,ccordinu' to the definition of structure y = a?, f, . dsy
Ay, . fu o g(ds); ayy ... ap). Then, the e).tenblon of f;
at x is funcmon f,,, On the other hand, provided that ¥y = 27 is a model
and that each H), is bijective, it follows that to each model z there corres-
ponds (vie a certain function H,) a uniquely determined model z?. If &
is hy, then af is @, which shows that the present view is a generalization of
Balzer’s one. The first step of my argument is then this : it is possible to
define F; so that the value of f; at =z for any admissible argument be
exactly the value which, according to the standard view, is the value
of f; at of for that argument

Our talk about models received thus a non-standard interpretation
to the effect that whenever we indend to deal with some model x, we
actually deal with the model af. In this sense, my approach requires that the
language we made use of to deseribe the models of a theory T receives a
non-standard interpretation in that at least the names in it which stand
for models of 7' do not refer to exactly those models we intend that they
would refer to, but to other models of 7.

By use of definition Fy(x) = fiu, = = fi-» ome yields then the
n functions fi, ... fu of 7. Call them Hi-functions. Tf, on the other
hand, one starts with definition Fi(2) = f; n,n, then he yields » (pos-
sibly different) functions f;, ... f,» of T. Call them H,-functions. I shall
say that F,, is the H,-function fi; obviously, F,’Hhois the H,-tunction f.
I also say that f; is H,- T-theoretical iff the H,-function f; is 1-theoretical.

Balzer’s definition of theoretical functions simply generalizes to
H,-functions :

1) A set B c M, is Mqp-H,-f-invariant iff
(Vey) (re BAax ~ .y - y e B)

2) fi is H,-T-theoretical iff

a) B = M7 is a species of structures;

b) B is M,-H,-frinvariant;

¢) (Vo) @eB A ye B = fumu ~ fimm)

The main effort of this section is to prove the following theorem :

Theorem 2. f; is H,-T-theoretical iff it is _ H;-T-theorctical.
Proof. Let B be included in M, and let it satisfy conditions (2a), (2b).
If o, y are in B and # ~y, then fj y,) = frum for each j=1,... n,
j # 4. First, from fj 9 = fin,m results that f1.2=f; 4 Indeed, accord—
ing to the definition of F,.,,h, it holds that f; .(g (d1),. . . 9(ds); @y, - - .ap) =
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= fig(d), ... g(dy); ay, ... ap), for evely dy,...ds; a,...a, But
cach of 1he k component functlons or=1,... k) in g are bijcctive and
therefore it holds that f;.(d, ... d,, al, = fiydy ... ds;
@yy. . . Ay), 1.C. Jiz = 10 Now, a%ume that f; is H,- T ‘rhemetlca.l then,
for evely x, y in B, there is « so that f;gm = o finw- leen the
defmmon of fim,y it holds that. fi.(g( )y ... g(dy); ay ... ap) =
= fisg g(ds); @y, . .. @p) for every dj, ... d,,, @y ... Gp; then,
it also holds “that fraldy oo dssayy oo ap) = a fiyldy, .o dssay,y ool ay),
ie. fi, = af;,, which completes the proof that 'f; is H,-T-theoretical.

The other part of the theorem proves analogously.

Let 1' be, e.g., CPM. In this case, k = 1 and therefore g = (g).
For the sake of simplicity, I assume that the CPM-model x is a model
¥ (G being a group, for each ¢ in G, there exists some g~! such that
gog~l = go). Then z ~ & comes to s.p, t) = 8(g(p),t); fiup,V) =
= fislg (p), 1) (1 =1, ... m). If there it holds that (v) (3t) (8.(p, ) #
# 0), then ¢ bung b1]e(,‘me, it also holds that (vp) (3t) (E(p, 1) # 0).

From m.(p)-§.(p, 1t z ]21(1)7 1) = Z f! <((g(p), y=m(g(P))- §:+(9(p), 1)

infer m (p) = m, (g(p)), i. e Mg,y = My, oy AN especially my, ) ~ My, =,
which results in m/’ s being H,-CP M- theoretlcal

IV. On the meaning of the argument. I shall try to clarify in this
section the second step of the argument by focusing on the example dis-
cussed at the end of section ITI. Under the H,-interpretation of the func-
tions appearing in CPM, if B is appropriately chosen, it is provable that
if x~,a’, then the extension of function m at @« is equivalent (in the sense
of (1, p. 133) with the extension of m at «’, i.e. for each particle in the
domain of z and also of z’'.

4.1. My, @(Pp) = oCmnh(z)(p) with « = 1,

However, though formally as good as M, -functions, our H,-func-
tions fail to accomphsh the intuitive intentions underlying Balzer's (and
also Sneed’s earlier) approach. Indeed, Balzer takes the existence of a
class B of C P M-models which uniquely determines function m as defining
condition for m ’s being CP M-theoretical. His intuitions with this defmltlon
seem to be the following : let m be a map P —» R, with P = U P,

that m = |_Jm,; then m is a function, i.e. if a particle p does a.ppear both
XED

in the domain of z and also of y, and m.(p) = k and m,(p) = k’, then

k = k' and, consequently, m,(p) = my(p).

The trouble with these intuitions springs once theorem 2 is taken
into account. If assumption (2.1) holds, then, by theorem 2, m is both
H;-theoretical and also H,-theoretical at CPM. Here I shall mainly
concentrate on those aspects concerning the meaning of an expression like
(4.1). The point is that equality is in total disagreement with the intuitive
requirements assumed in Balzer’s treatment of theoreticity. (4.1) is for-
mally equivalent to

4.2. m.(p) = m.(g (p)) for each particle p.

But it is of course possible that m.(p) = &, while m(p) = m.(g(g " 1)p)))=
= mx(g"Hp) = m,(p’) = k', with k¥ # k’. The counterintuitive result is
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ihus that the H,-function m was proved to be H,-CP M-theorclical, though
it attaches to the same particle p quite different values at different mo-
dels of CPM.

Obviously, the first objection that comes to one’s mind is that H,-
functions, as diverging from H,-ones, are quite strange, obscure entities
of which it is almost reasonable to delete with. H,-functions, on the
contrary, enjoy a logical or at least an epistemological priority over H,-
functions. Moreover, the T-functions we #ntend to make use of are I, -
functions.

However, the argument fails : I, -functions have no priority over
H,-ones. Let me sketch the proof, paying more attention to issues about
logical priority. Assume a certain function H, is fixed. Remember that,
by theorem 1, H, is bijeetive. Then it is possible to redescribe the defi-
nition of the H,-function f; of theory T by F(IH,(®)) = fiu,x- The
T-function just defined is, actually, F‘."nﬂ' But, by virtne of the defini-
tion of H,-functions, we get Fi(z) = fi u,(»- This function is, actually,

By, Therefore, it holds that F,, (@) = Fiy,, (I, (x)) and also

F,.,,h(H,‘u(m)) :F,-,,,,,o (H,(x)), which shows the symunetry between I -
and H,-functions. It is thus possible to take I,-functions as primitive
and define H,-functions analogously to the procedure we appealed to

above when H-functions were defined. Indeed, let k7! be a function of’

which it holds that : h~1{G,)= (A(G.) L. Then function I, —1 is a bijective I,-
function. Now, F; 4 _, which was defined with respect to Fiy, Oy Foyp (@)=
= F,,,,h(H »—1 (2)), is actually an H, -tunction. Indeed, F"."n( H, — 1(2)) =
=Fyp (Ha(Hs — U2))) = Fopy, (Hu(H — 1 (2))) = Fy y, (2). On the pre-
sent approach, H,-functions are strangely enough, for the extension of

fo at a is the extension of (what according to the I,-function f; is) the

extension of f; at model H,—1 (x), i.e. 2¢', for some funetion ¢’ = g71.°

Turning again to CP M, let m* be function m,, and let m be fanction
My, 5 assume that h (G,) = ¢ and also that @ has the form 4. Then,
provided that m* is CP M-theoretical (for, as Balzer proves, m is CPAl-
theoretical and theorem 2 applies), m} (p) =m;(p) holds. Now this expres-
sion holds 2 iff it also holds that m,(p) = m.(¢g(p)). But the two equations
differ in their logical form, for while the former concerns the values at two
models of the mass funetion for some particle p, the latter one provides

8 Balzer’s approach to theorelicity is essentially committed Lo the notion of ¥-tran-
sport 1, p. 131]. A {-transport involves both: 1) bijections on scts Dy . (r =1, ... k); and 2y
the corresponding “‘transports” of the (values of) functions iz (i = 1, ... n). My urgument
relies on a sharp split of the two aspects involved in the notion of Y-transport. The transfor-
mations considered are given simply by bijections W', on sets D, z while functions f; are not
transported, they remain unchanged. It is for this reason why,'as 1 believe, Dalzer’s appro-
ach fails if confronted with the IIp-funclions argument.

% 1If some criterion were laid down with a view to divorcing Hpfunctions from  Hpy-ones,
it would still be possible to think of it as of a JI-crilerion. Therefore, it could not make
its point,

10 Note that the present use of expressions like m‘*;(p) = m;(p) is not commitled to the
assumption that they hold fat some model. This view sharply divges from the one adopted
in the next seclion. 1lowever, 1 do not aim at clarifying in the peresent paper the semantie-
al assumplions invelved in lhese lwo views about models (sece also note 6 on Lhis issue}
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a comparison of the values of the mass function at two models for two
different particles, namely p and p’ = g(p).

‘ Tt seems then reasonable to claim that in, e.g., “mjg'(p) =k,
the argument of the H,-function m* is not p, but ¢ (¢'(p)) = p’, while
in “mig(p) = k" its argumeni is g (¢”(p)) = p” (and it is of course
possible that p’ # p’')

T believe this points a very important issne concerning the status
at a theory 7T, e.g. CPM, of the clements in sets ;. Balzer looks to rely
-ou the following view (it seems to me that it is consistent with our intuitions
about particles) :let P= | J P,. A particle p is identified with a function

FE€Mepyy
p: Mepyy » P such that for all #, p(x) is an element, say p, in P. Thus,
p selects at every model z of CPAM the same entity pl. It is for this reason
that p could then be substituted in all contexts by p. (To put it in other
words, p is the intension of the constant “p? and p is, at any model, the
extension of “p™; seecond, “p” is rigid, i.e. its intension is a constant
function).

However, once we rely on the H,-functions argument, a quite
different way to think of particles is needed. A particle is, in this view, a
partial function p: Mcpy — P of which it holds that : 1) if p(«) is defined,
then p(a)e P,; 2) p(a?) = g (p(x); 3) if p(«) is not defined and &, = G,,
then p(y)is not defined 2. On this view , “p’’ is not rigid anymore.

This case faces a close analogy with the cross-identification puzzle
in modal logic : are there cross-world or world-bound individuals? Balzer
seems to admit of the same individual’s (e.g. particle) being the inhabitant
of more than one model of the theory. He also assumes that there are
systematic means to identify it in each inodel in which it exists. As opposed
to Balzer's approach, the H,-functions argument is not committed to these
two assumptions (and especially to the second one). Indeed, given a class
of T-models, one needs not to seleet the same individual at different clements
of ity rather it is required, e.g., that each individual be uniquely correlated
at any other T-model, say ¥, with some (perhaps different) individual.
Balzer’s view, as deseribed above, scems therefore to entail stronger de re
commitments. However, their nature is not clear so far. I shall have more
to say on this issue at the end of the final section of the paper, devoted
entirely to modal topics in theory reconstruction.

Remark. Assume that n}{p) = m}(p) is interpreted, under a Balzer-
type approach to particles, as asserting something about p, i.e. p. Then
it would mean : m.(p) = m,(p). The trouble with this suggestion is that
it does not preserve all the properties of the CP M-mass function. Indeed,
though my,, was proved to be CP M-theoretical, my, needs not share
{under the assumed interpretation) this feature.

u i |»(.'v)¢ Pz, then p does bot exist at a (but it is still the extension of p at x).
. A anore general approach to this problem is Lhe following: let the elements of the
bhase-sets of a model x of T be reconstructed as functions in the following way. If there
is some x € My so thal ds is in Dy g, then ds is identified with a function ds: Mgy —
— U Dyg. Obviously, as suggested above on the € PM-example, there are at least
xeMT
two different ways to define dg. T.et g be a set of functions dg; then a model x of T can
be reconstructed by: x= Dy o Mg Az oo Az [ oo fuz)
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V. Modal axiomatizations and the Ramseyfication of theories.
Balzer’s criterion of the theoretical does not then work, for it cannot di-
vorce intended from non-intended interpretations of a theory’s functions.
And yet—as I shall try to show below—it can have a good use in an appro-
priate understanding of what is for a function f; of a theory T to be
T-theoretical. Now have a moment’s reflection to the very nature of the
contexts brought about above and of which I held that they count against
the semantical definitions of the theoretical. It seems to me that they all
share an intensional character. This was apparent with the issues about
the status at T of the elements of sets D, ; but the use of the II,-functions
also appealed to intensional contexts. Indeed, my argument implies that
one can have different — and equally good — intensions of the theory’s
functions, of which some are not intended. To put it in another way : the
semantical definitions of the theoretical cannot accommodate intensional
contexts of theory use.

It is this reason why I shall take into account the issne of modal
axiomatizations of theories as an attempt to dissolve this sort of argument
against the semantical approach to theoreticity.

Let T be a theory and let 4, be an axiomatization of it in a classical
first-order language L. Let L be enriched to a language L by adding
to it the necessity operator N. The axiomatization of T in Im shall be then
modal, i.e. a Im-axiomatization. The underlying modal logic is assumed
to be the Brouwerian system (B)1.

Let Jp, = {fi}i= S be a family of l‘—fun(,tlom

I shall say th&t mAy, is a Lm-axiomatization of T in the language
Lm if the specific T-axiom

T:Qf, .. 3L Vi =Mr ... Nfu = fIANALSS, - fulfD)

is added to the axioms of functional logic and modal system B. Here
Ji=fi@=1,... u)is short for (A aVd, ... VA,V a, ... Va,) (fd,.
colyy @y @) = (fidy, ...y ay,.. . @) and Ay fl/f1 oo Julfa is
the result of substituting in A4, f- functlons by fi-ones (i = 1 . ).

5.1. Definition. f, is T-theoretical iff f; e J,, and md; is a comustent
Lm-axiomatization of T, for some set J ,.

Let, e.8., Acpay be the axiomatization of R. Montagne (4) of CPM.
Take Jcp,,, ;. bethe set {m, f}. (I shall not consider there more special issues
about the formal structure of f, or of the family of functions which could
be used to replace it). Now define on M., (the class of admissible inter-
pretations of mA,py) a relationship B by

R, )it {(X:2ENX}c {X :y4 X}

If the underlying modal system is B, then R is reflexive and symmetrical ;
and if B is strengthened to S5, R comes to an equivalence relationship
on M CPAM-.

13 1 believe, Lhis choice is supported (besides some other reasons 1 shall not take into
account here) by Balzer’s use of (partially overlapping) subtheories of T in which a function
ft is uniquely determined.
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CPM is, obv1ouxsly, true at any model x in M.,y ; therefore,
“N (my = m)” is true at # for some function m;. If R (z, y) holds, then
“mi = m” is true at y. But, provided that y itself is a CPM-model,
“_N (m, = m)"” is true at y for some function m, and hence, R bemg’
reflexive, “m, = m" is true at y. As a result, ‘“m; = m, " is true at y.
It is very important to notice that mj(p) = m(p) holds both at = and also-
at ¥ and that at y it also holds that mi(p) = my(p). But this does not
exclude the possibility that “m(p) = k,” be true at z, while “m(p) = k,”
be true at y, with &k, s k,, i.e. that m,(p) =k, holds at # and m (p) =
(= my(p)) = ky holds at y. This shows that the Lm-axiomatization of
CPM, as formulated above, admits of conceiving the CPA-functions as
H,-ones.

The proof that m is CPM-theoretical reduces to the proof that
mAepy I8 congistent (it is this sense in which I claim that definition 5.1.
provides a logical criterion of the theoretical). Now, a consistency proof of
a Lm-axiomatization of theory 7 amounts to proving that there is a
¢ ‘modal structure” (M,, R), with M, and R defined as above.

The present approach to theoreticity is subject, however, to a fierce
criticism. Indeed, “being T-theoretical” seems to be relativized to ‘“being
T-theoretical with respect to a certain modal axiomatization of 7.
Then, the argument goes on, the proof that a function f; is T-theoretical is
not required to involve the unicity of the choice of set Jy ,.

It looks to me that the above criticism fails. Let A.p,; be Mon-
tague’s axiomatization of CPM. Then there is one and only one consistent
modal axiom CPM, if A.p,, is consistent. One can prove, e.g., that at
CPM the pomtlon function s cannot be added to the set Jepy, =
{m, f}. But it is also possible to show that here is no way to construct
Jepary 80 that ¢ would be a member of it.

Let us assume that A p, i3 consistent. According to the above
definition of theoreticity, if m is € PM-theoretical, then there is a consistent
axiom CPM, ie. if m is CPM-theoretical, then A, entails that CPM
is consistent. On the other hand, if m is CP M -theoretical, then CPM
entails that (Am') NA py(m/m') and further (I m') Agpylm/m’).
Now Agpy and (3 m') Agpp(mfm’) are deductively equivalent; there-
fore, if (Im')A¢ppy(m/m’) is consistent, then A.p, is consistent too.
Consequently, if m is CP M-theoretical, it follows that if CPM is consistent,
then A.p, is consistent. We conclude that ’s being OP M-theoretical
presupposes that CPMand Ay, are equivalent with respect to the consis-
tency condition.

A very powerful means to deal with the uniqueness condition concern-
ing the choice of set Jr, (in particular, the choice of Jgpy,) is fortu-
nately supplied by Balzer's approach.to theoreticity. Let us-apply it to
CP M. Suppose that function s is CPM-theoretical, i.e. the specific axiom
CPM of mApy entails that

1) @) (N(S" = 8) AN dcpulsfs’, mim’, JI1")
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Analogously to the proof I carried out above with respe:t to the mass
funection m, if # and y are CP M-models of which it holds that R (z, ),
then

(2) 85 =8,

is true at y. On the other hand,

(3) §p, 1) - mUp) = 3 14p, b D)

is necessary at 2 and therefore true at y. But  being a model, it holds
at g that

”

(4) 8(p, O)-my(p) =3, fuldy 1, 9)

i

Let y be such that m} = my, f; = f; (it is at this moment that the
demonstration appeals to Balzer). This assumption does not contradict
the assumption that R(z, y). From (3) and (4) it follows :

(5) 5dp, 1) = §(p, 1)
By integrating twice we get

(6) $ip, 1) = sy(p, 1) + o - b

But, if v and b are suitably chosen, (6) together with (2) yield a con-
tradiction.

1 think that, given the results of the present section, Balzer’s approach
to theoreticity could be better interpreted not as an attempt to offer a
definition of “term ¢ of a theory 7' being T-theoretical”, but rather as a
means to show that this property of a terin is not relative to the choice ot
a certain axiomatization of 7'.

In the remainder of this paper I shall examine in more detail the
logical structure of axiom T. T shows a sort of analogy with the Ramsey-
sentence of a theory,in that it involves quantification over the theory’s
functions. In a sense, it reinforces the bearing of the Ramsey-sentence of
theory 7T on the dichotomy of theoretical from nontheoretical functions
of T. But, while on the standard account constructing the Ramsey-
sentence presupposes the dichotomy, on the present one T does provide
a (logical) criterion for taking some of 7”s functions be theoretical at it.
However, in T 7-functions f; still do occur. Quantifiers range over func-
tions necessarily equivalent to f’s. 3f-type.quantification was_used in
T with a view to handle the (intensional) contexts falling under the scope
of the necessity operator (this formal trick is due to R. Montague).

Balzer’s approach seems to require a stronger possibilistie quanti-
fication over function-type entities and also over the individual variables
(including both the specific and also the non-specific variables of T).
Indeed, the trouble about the status of individuals at a theory (which I
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have mentioned in the previous section) and also the consistency of Lm-
axiomatizations with the use of II,-functions of the theory do asume of
actualistic quantifications.

To do this, let us first enrich Lm to a modal and possibilistic language
Imp by adding to it the possibilistic quantifiers X and = besides the
actualistic ones. Then, we turn the modal axiomatization T of 7 into a
modal and possibilistic one Ty (sce (2) for a detailed account of this issue)
as follows : all actualistic 3 f-type quantifiers in T are replaced by possi-
bilistic ones ; and second, for each f; (¢=1, ... ), the expression “N(f,=
= f)" is replaced by “(Zard, ... nd;na, ... na;nk) N ((d;, ... d;
Gy o Qs RYEfi=(dy ... ds5 0y ... ay; a- K)eSfI).

I take Ty to be in good agreement with the naturalistically minded
philosopher’s view on a theory’s domain and also with his conviction that
H,-functions and H,,-functions could not be on the same par. The main
formal advantage of formulating T, is that it clearly shows the nature and
the strength of this philosopher’s de re commitments.

As far as our main purpose is to find out a ecriterion for a func-
tion’s heing theoretical at a theory, I believe that Ockhman’s razor — be
committed to de re claims only if necessary! — should be taken as a
most important means of appraising alternative approaches to theoreti-
city. That is why I do not agree with the use of Ty axioms *; on the
other hand, T-axioms are, as I tried to show above, much too weak.
The appropriate solution to this dilemma seemis to me to lie in semantics
rather than in methodology. But it was not the aim of the present pa-
per to develop it {(one could, e.g., rely on a Putnamian position to avoid
the IT,-functions argument); for I have simply tried to provide anargu-
ment against the semantical definitions of the theoretical.
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14 1t is necessary to notice that the argument against Balzer’s definition of the theore-
tical does not dissolve with establishing 1he nature and the strength of his de re claims,

‘The argument could be reiterated somechow as follows: call (Mp, R) amodel-structure,
where R is a relationship defined (as indicated above) on Afp. Now, if one provides a seman-
tical frame for modal (and possibilistic) axiematizations and if the model-structures he brings
about are set-lheorctical constructs, then it is still possible lo redeseribe ihe class of T’s
wedel-struciures in a non-standard (nou-intended) manner a.s.o.



